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Abstract

The predicted orientation of Venus' rotation axis relative to its orbit can be uniquely de-
termined given knowledge of its J2 gravity coeflicient arid polar moinent of inertia C if its free
obliquily is fully damped. This assumption scems warranted given the dominant damping mech-
anism: turbulent fluid friction at a core mantle boundary (CM}]), Thisskin friction results from
diflerential obliquit y of mantle and core spin axes, and the assoc lated damping rate could be as
short as I/l 0%yr. However, the observed pole orientation indicates a free obliquity amplitude
¢z~ 2.1° compared with anominal forced amplitude of 0.5°. ‘1’here arctwo plausible explana-
tions. The most likely is that the observed obliquity is a tidally evolved end state in which core
friction, modulated by CMB ellipticity and core obliquity amplitude, counterbalances solid and
atmospheric tidal torques. This concept is sirilar to the explanation for the retrograde spin
w &S an end state in which solid and atmospheric therni al tidal torques balance a the present
spin rate because of the w” !dependence of the axial thermal torque. Large core ellipticity
ez (C, - %(Ac -l B8))/C (Ce > B> AC are core moments of inertia) can substantially
increase fluid friction damping tirnc if €. is significantly larger thanthe whole body ellipticity

eo JyMR?/C =~1.3 x 10°by reducing the relative obliquity of core and mantle spin vec-

tors. Note that the hydrostatic contribution to oblateness - 1./ x 107 is presently negligible.

Weaker effects such as solid and thermal tides canthen compete with core friction and for plau-

sible models, their sum tends to increase free obliquity. The obliquity balance is controlled by



the nonlinear (and nearly quadratic) dependence of the CMB turbulent ‘skin friction’ torque on
obliquity. 1 find that a steady state is achieved for ¢.=~29¢,~4x 1 0- 41f the CMB topog-
raphy is dynamically supported, then the necessary hottomn density anomaly is constrained to
the bottom ~ 10% of the mantle.

An alternative model is that the obliquity results from resonant excitation due to small
amplitude (< 0.0020), prograde oscillations in Venus’ orbit, one of which happens nearly to
match Venus' precession rate cr. This mechanism can account forthe obliquity even if the iron
core has solidified, butalso requires a tectonicaly quiescent planct(d|Jo/dt| < 1015 yr—1).
This model hasbeen explored numerical aly for awiderange of initial conditions, tidal parameters,
temporal Jvariations and chaotic wander of the driving frequencies for the orbit. Only four
frequenc.its, inor near the predicted band for u, have asignificant eflect and also have a narrow
range Of effectiveness. 1 estimate the polar moment t 0 be in range: () 79%{%&%31 -and
hence the precession rate o to he in range: 44.1 <0 <45.8" yr- 1hased on construetio~l of a suite
of density profiles in which mantle composition and core size have theoreti cally limited variations.
Comparing resonance widths to the o uncertainty, 1 find that the resonance hypothesis has about
a30% chance of being correct,

Corcellipticity aso has a profound cflect 011 tidal evolution of Venus obliquity. The ratio of
turbulent core and solid tidal friction scales like w™*, iinplying that core friction ‘turns on’ only
as the spin w approaches its end state, | also find that the semniannual atmospheric tide can
have a dramatic eflcct on evolution, alowing for inversion of spin orientation fromn prograde to
retrograde if theinitial obliquity is sufficiently large (> 45° ).

Potential measurements whit.} 1 have bearing on these models including precession rate, tidal
Love number k2 and semidiurnal variation in atmospheric pressure at Venus' surface, Perhaps
the most uscful parameter is k; which is detcc.table from o1bit, requires only a modest improve-
mentinthe tracking accuracy and spacecraft stability over that provided by Magellan and is

an excellent proxy for core fluidity and if fluid, core size and composition.
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1. introduction and Background

The discovery ofVcr~us'retrograde rotation prompted Gold and Soter [1969) to propose that this
slow rotationisnear stead y-state. A balance is achieved between solid friction torque which drives
Venus toward synchronous rotation and a thermally driven, at mospheric torque whit.11 drivesit
away from synchronous rotation. The spin stabilizes because the tidal phase lag (= Q1) is weakly
dependent 011 the semidiurnal frequency while the atmospheric phase lead is expected to be inversely
proportional to frequency [I ngersoll and Dobrovolskis, 1978]. linplicitin the above choice of a
negative spin is that the obliquity ¢ is near O°. Omne could just as easily choose a positive spin and
a corresponding obliquity near 180°.

However, other attempts to understand the rotational dynamics of Venus (and initially based
onsuggestive butinaccurate data) have foundered once more precise determination of spinrate and
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wobble amplitude (proportional to the C21/521 gravity coeflicients) were obtained. The successful
explanation of Mere.ury’s rotationrate interms Of aiesonant spin-orbit couple with the sunled
Gold and Soter [1969] to proposc a similar mechanism for Venus [also see Goldreich and Peale, 1970]
involving carthinstead of the sun as the external body controlling thespin. The predicted Venusian
rotation rate w necessary for this mechanisin to maintain this spin- orbit lock is 22/243.16d. The
latest results from geodetic analysis of overlapping, Magellan SAR images[Davies et al., 1992] find
an observed rate w (see table 1) that is not close enough to the resonant rate to maintain this
spin-orbit configuration.

Ward and DeCampli [1979] proposed that t urbulent, fluid friction at a fluid core-Irlantle bound-
ary should drive the spin pole to a fully damped state.’l *he observed rotation pole position happened
to be near the norinalto the invariable plane and seemcd to require aJ2 ~ 10--7 or shout 100 times

smaller than Earth’s non-hydrostatic J2 = 1.1 x 10~*. The hydrostatic contribution of rotation

and solar tides to VenusianJ2 is~ (w? + 322)R/g~ 2 x 107, where the orbital mean motion



n =- 27 /224.695d, radius r= 6051.8 km and surface gravity g = 8.870 m S”. Yoder and Ward
[1979] proposed thatthe Venusian J, probably is comparable inmagnitude to the non-hydrostatic
Jy of Barth, but that the effective J2 about the spin axis can be significantly reduced by a factor of
~(1 —2 sin‘ew ) if the wobble amplitude cw is near 54°. ‘I'he wobble damping is entirely controlled
by solid friction and that the damping time constant 7 x 105 Qu y1is of order 10'to 10% yr
(where ~ 10< Qw < 300 isthe dissipation factor associated with flexing at the wobble period
~243d/(142(n/w)?)e,). Barth-like excitation amplitudes were scaled to Venus and the results
suggested that climatic ortectonic activity might justify a wobbleamplitude aslarge as 10° or
more. Solutions for the gravity field using PVO Doppler data [Mottingeref al., 1985] soon demon-
strated that the J,~ 4.5 x 10-¢ (confirming the value obtained from Venera 9 and 10 tracking
data [Akim etal., 1978]) and detected a wobble amplitude of 2.64 ().3° .

At this point theapparently undamped free obliquity of Venuslacked an explanation, but the
significant free wobble seemned to support a dynainically active Venus. However, recent solutions for
the Venus C21/S21 gravity cocflicients [McNamee et al., 1993; Konopliv ef al., 1993] which include
Magellan Doppler data point to a much reduced wobble amplitude 0.45°4 0.04°. This factor
may support, the proposition that Venus is significantly less active thanlarth, where ‘activity’ is
due to climate or tectonics. Crater populations and estimates of the last major (and apparently
nearly global ) resurfacing event[Schaberet al., 1992] about 0.5: 0.3Gyr ago tend to support
this interpretation. Arkani-Hamed [1 993] argues that the lack of evidence of ongoing resurfacing,
the apparentl y small convergence rate ~ 0.1 crn yr—! for some of the folded terrain, the possible
dominance of hot spots for heat flow [Morgan and Phillips, 1983] and the absence of a magnetic field
support a “cold” Venus model[Arkani-Hamed and Toksoz, 1984; Arkani-Hamed, 1993], where the
mean mantle temperature is ~ 100°K cooler than earth’smantle at the same pressure. Numerical
convectionmodels constructed by Arkani-Hamed and Tokso6z [1 984] with active recycling of crust
result in a frozen core. However, it is expected that the presence of impurities such assulphur

suppress the Fe eutectic inelting point by several hundred degrees [Usselinan, 1975], enough to




prevent freczing.Yor Farth, wherethe presence of volatilesanda less buoyant crust should speed
the convective process, only 570 has frozen out at the bottom of the core, producing Earth’s inner
core. in fact, the absence of a Venusian magnetic fieJd has been linked to the absence of a solid
inner core [Stevenson etal., 1983], partly based on the idea that core freezing provides theenergy
(through bottomlayer buoyancy) necessary to drive fluid convection. Inthe following material,
the fluidity of the coreis anessential element in anew model which accounts for Venus spin pole
location. The self-consistency of the modelandthe predictions concerning the thermal boundary
layer at the base of Venus’mantle, in eflect, demnonstrate the existence of a fluid core given the
absence of a compelling alternative.

A second alternative has been found involving reson ant excitations. This mechanisim works only
for a limited range of precession rate o and requires a tectonically dead planet.

This paper includes a thorough discussion of most aspects of this problem. The first objective
is to derive the free obliquity amplitude and show that for a reasonable range of core parameters
that obliquity damping should be rapid unless core ellipticity is Jarge (sections 2.-5). First, Venus'
forced obliquity is derived in section 2 using a simpli fied mnodel and compared with the observed
pole location. Second, a plausible range of Venusian structure models are constructed to determine
aplausible range for moment of inertia and potential 1.ove number &, (adso sce appendix A for more
on this material). I'bird, brief descriptions of the tidal and atmospheric torques [e.g. Dobrovolskis,
1978] are describedin section 3 (Also, see Appendix 1) for development of a general model for tidal
potential). Fourth, a model is constructed in section 4 for the core-mantle torque caused by fluid
friction at the core mantle boundary (CM}]), which Ishow is alinost certainly turbulent. This model
is compared with the predictions of a laminaifriction model and laboratory experiments [Vanyo,
1991] which determine the onset of turbulence. The linearized, dynamical model is described
in section 5 and appendix C and the conditions for obliquity to achieve a stationary statcare
enumerated.

The second objective is to explore the implications of the inferted ¢, 011 internal structure and




this new CM I model 011 tidal histories. The geophysical consequences of a large CMB ellipticity

are explored in section 6. Iattempt to justify the core oblateness asa dynamic balance between
CMB deformation and a thermal boundary layer just above it. Section 7 presents the consequences
of this model on tidal evolution of spin and obliquity. "I"he most interesting result is that for a
certain class of models, the spin axis earl flip from prograde to retrograde orientation.

The third objective is to consider the potential effect of resonant excitation (perhaps driven
temporal changes in J2)on the steady state hypothesis (sections 8 and 9 (numerical integrations)).
First 1 show that resonant excitation could temporarily increase the obliquity by as much as a
factor of 3 greater than its equilibrium value. However, since the CMI" torque is proportional to
o; 3the infer-r-cd coreellipticity is reduced at most by a factor of 0.7. Finally, an alternative model
is developed using chaotic wander of tile weak driving fiequencies (calculated in appendix B) to
excite afree obliquity. This second model requit es a quicscent planet and is consistent with core

solidification.

2. Determination of the free obliquity

Since it is central to my argument, 1 shall first derive the predicted pole position based on a
simplified model which momentarily omits the eflects of corcandtides. The solar torque acting
011 Venus oblatefigure is proportional to the diflerence p - I’, where the whole-body, obliquity

variable p and orbit normal variable P> are defined by

p=sin e P =sin e (1)

1'hie complex, Cartesian variable p ( p = pa - ipy) describes variation of the obliquity €and
nodal orientation ¢ with respect to the invariable plane. The uppercase 1’ variable is similarly
related to the orbitinclination ] and orbital nodal angle §2. The changes in P arise from the orbit-
averaged action of the other planets(Laskar,1988, 1990] and can be expanded in a periodic series

P(t)=Y; sin ]'j},_(t). The frequencies d2;/dt are nearly all negative. The8 terms corresponding
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to the linearized lLaplace-Lagrange solution for botheccentricity andinclinationare givenin table
2 [Laskar, 1990]. Thetwo largest sin J; terms have amplitudes of 0.013 and 0.019 and rates —5.62
" yr—! ant] --18.85 “ yr—?, respectively.

The linearized dynamical equation describing the variation inobliquity is

] _} (in{ %)(p,p):o’ ()]

where T is a decay time scale. The free precession rate o {e.g. Smart, 1961] is

3. n* MK?
0= ’—EJ?:’“-—E, ’(] - (‘2)~3/2 COos ¢, (©)]
where rotation rate w = -- 27 /243.0185 o 0.0003d [Davies ¢t ol., 1992}, orbital mean motionn =

21 /224.6954 d, , mass M = 48.685 x 1023 kg and radius ® = 6051.8 km arc well determined

quantities. Venus’ present orbital eccentricity ¢ = 0.0068, however its long term average is 0.034
(see table 2), while 1 shall argue that the presentobliquity is 2.1°. These two factors change o by
only O.1%.

The most recent published solution for J2 (3,= 4.44 1 14 0.0056 x 1 () ¢ [Konopliv and Sjogren,
1994]) has been updated to (J,= 4.424540.0013 x 1 () ‘'[M GNP751, Konopliv, priv. comm.] from
asolution for a gravity ficld of degree and order 75. The presence of a fluid core with polar moment
(. and core nutation frequency o, reduces o by a factor ~¢(1- C,0/C o.) (see equation[53]) and
hence can reduce o by as much as 1 % although the most plausible reduction is 0.5%. Fstimates of
the principal moment C areless certain (although a plausible uncertainty is about 3%) and must
be derived from structural models with quasi-earth-like piofiles [Basaltic Volcanism Study Project,
1981] which only need satisfy the mean density constraint,p=5.204¢ cin” 3,

A suite of models have been constructed ( sec appendix A for more details), using a version of
the parametric earth model (PEM ) [Dziewonski et al., 1975; see Fig. 2 ant] table 5] as a starting
point, and for whicha polynomial representation dependent on pressure is employed, Mantle

composition is varied by changing the molar fraction of ke relative to Mg (f.,=Mg/(Mg4 Fe))



using the properties of forsterite (Mg2S04 ) and fayalite (Fe2504 ) as analogues. The core density
is varied from an earth-]ikc model by introducing a constant difference ép, (seeeq. (1 09)). T 'he
results of this study arc shiown in figures 3-5 and table 6 (in appendix A). Figures 3, 4, ant] 5 display
plots of the k2 tidal Love number versus whole-body rnioment of inertia, core moment of inertia
and ép., respectively. The most curious result is that k2is most strongly correlated with ép.. A
plausible range for k2is 0.23 to 0.29. The Love number has aso been calculated for the case where
the core is completely solid andthe results indicate areduction in magnitude to k;(solid)~ 0.17.
Variation of a plausible fy, is limited to £0.05 about «n eartll-like mean of 0.89. This constraint
is supported by in situ X-ray fluorescence spectra of surface rocks obtained by Venera landers which
indicate ancarth-like basaltic composition [M oroz, 1983]. The corresponding fractioual change in
mantle density is 3.0.03. Core density is limited to changes of less than+0.5gcm~3 based partly
on the idea that Farth’s inner core density (which supposedly includes the effect of freezing and
distillation of iron from its lighter component) is only 0.6 g cm'3 more dense than the fluid outer
core at the inner core boundary. Parametric models of Venusian convection suggest that Venus
thermal profile is hotter and is perhaps offset by ~ 100K from Farth’s thermal profile at the same
pressure [Stevenson et al., 1983). At the opposite extreme, Arkani-Hamed [1993] argues that Venus
thermal profile is ~100K cooler, and this lowermantle temperature is supported by parametric
convection models with free upper surface [Turcotte et a., 1979]. The corresponding change in
mantle density is 40.4%,based on a nomina thermal expansion coeflicient of 4 x 107°K~! and is
therefore much less significant than composition in influencing Venusian structural profile. The

corresponding constraint on total and core moments are

0.331< 7&2(}{3 <0.341
(4)
0.041 >—-(i¢“> 0.020
“MR2T

Note that core moment size and total moment are anti-correlated.




This leads to the following estimate of o.
44.3"yr 7 < 0 < 45.8"yr77 | (5)

if the core is solid. Thisrange is shifted downward to about

44.1"y1" < g < 45, ¢"yr7?, (6)

for a fluid core and mantle which satisfy constraints on ¢, and C..

Becaunse Venus spin is retrograde relative to its orbit, the Venusiau figure precesses in a positive
sense, contrary to the major terms acting on the orbit plane. The efiect of the primary terms have
been obtained using l.askar’s [1988] numerical theory which includes a ¥I'T' estimation of the
largest ~ 70 terms affecting Venus down to the 2 x 10- *levelas it is probably the most precise for
time scales <106 yr. However, there are prograde terins whit]1 are omitted from published tables
because of their small magnitude, whichfor Venus < 1 x 104 inamplitude.

| have reconstructed these terms (see appendix B) using Laskar’s later [1990] model as a starting

point. Represent this sum as

])(2‘*’) = }: Lynojhie” Wmnokl )

The index mnol 11 corresponds to frequency 9,, + 9.~ So» while the index mnoj1l indicates the
jthsideband of the (eccentricity) g, primary frequency and the!’th sideband of the (inclination)
SO frequency. Table 3 contains a list of al prograde terms with amplitude >~ 1 x 107°, terms
with amplitude 2 x 10¢ in band 43"-> 44" yr-laud all termsin the frequency band 44" -+ 47"
yr'! with amplitude greater than 3 x 10 7 The amplitude spectra shown inlkig.6 indicate the
predicted band for Venusian precession rate is near the edge of a gap inthe spectra, with one strong
peak having frequency 44.223" yr~!just inside the predicted band in (6).

The response of Venus' orientation as a function of ¢ to both the prograde and retrograde terms

of »’ is shown in figure 7 using a nominal 7 =1 x 107y1. The norma to the invariable plane is



al, the origin, and the location of {he observed orbit normal and observed pole of rotation are aso
marked [Davies et al., 1992]. The difference between a point on the curve and spin pole coordinates
corresponds to the free obliquity. The size of the circular curves associated with each resonance is
inversely proportional toT.

Only three prograde terms within or near the expected frequency band produce significant
perturbations in pole position. Clearly, if 7 were reduced by a factor of 3-4, then the loop associated
with the driving frequency 44.775" yr~! couldintersect the pole location. A mom plausible scenario
is that these small prograde terms may be a potential source of the fiec obliquity through resonance
excitation due to slow changes in J2 or the driving frequencies, and this idea shall be explored later.

If driving termsin P’ in the frequency band {43.7 to 47" yr-'} are excluded, the predicted pole

location is insensitive too.

0.01877rad

Prforced =
= 1.0765° ®
o0 — 45
Py forced = 0.0?,204 + - 0_.5'“0.000]
~ 1.263°
The observed positionis
Pr ,obs = -0.00287
= -0.)64°
9)
Pyobs. ‘- -0.00768
= --0.440°

The diflerence is the free obliquity
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Pz free = ~0.62163
= —1.239°
(lo)
Py.frec == —0.02072
= ~-1.703°

or an amplitude of 2.10. If one adopts a positive Venusian spin, then the corresponding obliquity is

177.9°. The next step shall be to construct models which account for this last result.

3. Tides

The forma], secular equations due to both solid (K, Ky,) and atimospheric (Kos, Kap) tides for

small obliquity are [Dobrovolskis, 1878, 1980; Dobrovolskis and 11igersoll, 1980]

Ol.)ldgiw = Ky 4 Kas, (11)
1 d . )
Slr;(g( =Ky K, . (12)

The solid tidal friction factors Kis and Kip ar €

. 3kyn?MRH
Ko = 2222202t (2n - 2w), (13)
2 0f P2
Kip= - §£4£4_1}_{§,}i@ [6:(2n — 201+ &(2n-w) - 6,(-LO). (14)
4

Solid tides on Venus arc set by the parameter Hg [Kaula,1964; appendix D( see Eq. [145])]

) R S 8
H ®= —('g ) = 7.15x 10-". (15)

The semidiurnal surface tidal displacement at the equator is 3hoH ¢ IR ~ 60cin, where hy is the
tidal Love number for vertical displacement. The tidal gravitation field due to deformation is
proportional to thel.ove number k, The tidal pha<es lags é;(s)have the same sign as the flexing

frequency, s. It is generally accepted that their magnitude changes slowly with frequency. Presently
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w =-0.9246n, where nis the orbital mean motion. Thlerefore, solid tidal friction tends to drive
spin toward synchronous rotation where w=mn. The maximum change in the spin is a factor of
80 over 4.6 x 10%r. given a constant semidiurnal §; phase §(2n- 2w)= 1/Q = 1 /50 and a small
obliquity over the interval

The atmospheric torque is more complex, and an accurate estimate requires detailed modeling of
thermal, wind and density profiles. Dobrovolskis [1 978, 1980] (also sec Ingersoll and Dobrovalskis,
[1978] and Dobrovolskis and Ingersoll, [1 980]) derived a simple mode] which contains the important
physics. Tho., atmospheric contributions Kasand Keptlo ~gs(11, 12)are

8 1l (1-t ky) 6P

Kog= —_ 5 W - (2n — 2w), (16)

- 123 .
Ix"a,w—“'&‘ i"'_!]%(%tiz) [6P(21 - 2w) + 6P(2n - w) - b "(--u)] . (17)

The factor (1 -t ky).(1 -i k2 — hy) =~ 0.75 compensates for elastic mantle loading by the
atmosphere. The surface pressure oscillation 6F(s)aiises primarily from heat absorbed near the
ground, F,~ I00W nl “at surface temperature TO =¥ 730°K and atmospheric specific heat ¢, >
1000 J kg °K-1. The factor 8/’(s) depends on the ratio of heat absorbed during time 1/s to the

thermal energy per unit mass, ¢;7%.

§P(s) = —>- - (18)

Table 4 contains estimates for 6P(s)for four important constituents. They are derived from more
sophisticated atmospheric models which take into account winds and vertical strut.turc and include
strong bottom heating [Dobrovolskis, 1978, 1980; Pe« hmann and Ingersoll, 1984; Shen and Zhang,
1989, 1990].
Atmospheric tides drive the spin away from synchronous rotation and may also tend to increase
obliquity. The spin rate achieves a stationary, stable state when ( Ky -t Kos) vanishes. However,

the factor controlling obliquity evolution ( KX+ Kap)=> - 1.4K:> 0 unless one either chooses the
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tidal phase and pressure factorsto have the same frequency dependence (in which case the spin
balance is neutrally stable) or adopt a tuned atmosphere model which happens to introduce just
the right counterbalance. Finaly, the four models of Dobrovolskis listed in table 4 indicate that

(K¢ + Kap) ranges from —-0.4Kysto - 1.8K, if the solid phase lags are independent of frequency.

4. Core Mantle Fluid Friction

The magnitude of the Reynolds number Xe,defined as

Re = ud/v, (19)

determines the onset of fluid turbulence, Here v is kinematic vise.c)sity, u~|w K. sin Acis the
shear velocity and d ~u/{w|isthe lateral displacementof the fluid at the CM 3 caused by the
differential  motion. The angle Ac¢ subtends the core and mantle spin vectors. A typical HKe for

precessional flow is
Re = R? lw|sin?Ac/v ~3 x 10 sin 2Ac(em?s ! /1) (20)

for a Venusian core (core radius R,z 3R). Turbulence usually setsin for Re~ 10°to 10%. The
core e number is so large that turbulence at the CMB is almost certain unless Ac¢ is exceptionally
small.

An estimate of the turbulent stress can be obtained using mixing length theory [Goldstein,
1965] in which the laminar, viscous boundary layer is replaced with two layers: an interior, laminar
viscous sublayer with thickness é which is matched with an exterior turbulent boundary layer.
Within each layer, the stress is assumed constant. The velocity profile in the laminar sublayer
increases linearly with the distance £ from the wall (u = ugé/é) up to a layer thickness é and

velocity ug. The viscous stress is

Ty = PV ué/é. (21)



The Jaminar stress is matched with the turbulent stress at £ = éto determine é interms of the

other parameters. The turbulent local stress 7,is goves ned by

. d | d
T ™ pK1{2 El-f_u F{,u (22)

where k=~ 0.40 isthe Kdrmdn constant. The expected logarithmic velocity profile within the outer

turbulent layer can be approximated by

ry o LRI CE)
YT n2lE/6+ ¢ - 1]

pr? Jug| ug, (23)
which exhibits the appropriate behavior as € -6, .
Matching the two stresses atthe boundary £ = é determines é: & =»/k?us . The outer

boundary at £ ~d where the velocity reaches its limiting value u, leads to the following expression

for thelocal stress.

n, U
e s prt () ol e, (24)
0 .
Uug 1
e (25)
Yoo “Ek2Re
Uo

Analysis of the Navier-Stokes dynamical equation in which the velocity ue is not held fixed leads

to asimnilar relation.

Now the velocity u,= (.~ w )X R, and the loc a torque exerted by the loca stress is n =
R¢ X 7. Except near the polar circle with colatitude # =Ac, the shear velocity relative to the

boundary location at @ andlongitude # is periodic and has amplitude

Ue ™ |w| K, sin Ac sin 8 sin(wt— 8 — Ag), (26)

where A¢ is the relative nodal intersection line. The CMB torque is obtained by integrating Re X 7
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over the sphere. Before performing this operation, replace |u,|in (24) with its time averaged value

wR.sin Acsin /2.

The resulting global torque is Ny,

Ny = C K (turb.) (@} - @) (27)

2 . .
The core moment Ccf_v;MCR? and the turbulent coupling parameter is
¢ ]

457 Uug ? .
K (turb.) o ——=k? (__,) sin Ac|w]. (28)
2\f

In this calculation, us/ue was held fixed and is obtained from [25] using the nominal value for the
Reynold’s number. The value ue < ]—]0 for the expected core parameters.
Uo

The equivalent expression for laminar boundary layerfriction[R oberts and Stewartson, 1965;

Busse, 1968] is

K (lam) :'2.6W)w|/]£2 = 2.6sin Ac|w| Re™/2. 29)
K (lam) is smaller than K(turb) if Re>27(lnxk?Re ) or if v <0.dcm? s”'. The lam nar
boundary layer thickness is NR\/ 7z
For large core viscosity such that 11’12 >> 1, the Stokes limit applies. The core velocity u,

relative to the mantle is given by (see eq.3.1in Roberts and Stewartson| 1965])

2 2
u(‘fy»!—e—)li— (] — e A)((,t.)xl' (30)

where z is the spacial axis about which the mantle precesses. The dissipation is obtained from the

volumetric integral of pcu,-zX & Xr. This result is then equated withthe work Ny- (ti~-ii?). In
the strong coupling limit, &~ W =ZX W XT 7= The coupling parameter obtained from this
exercise is [Vanyo, 1991]

K (Stokes) = 30—;{24‘) (31)
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and I(C(Stolfgs) is always greater than o, or 0,. The dissipation caused by toroidal shear in this
limit is 1;0401 physically interesting.

Vanyo's experiments on precessing, liquid-filled spheres near the onset of fully developed turbu-
lence[Vanyo, 1973; Vanyo and Paltridge, 1981; Vanyo,1991], predict K (turb)=0.0035(150%)|w|sin A,
where 1 have inferred the uncertainty from the graphed experimental scatter . The two expressions
for K (turb) are equivalent ifu(g}é'_v]]—2 and Re~1x10". Unfortunately, the range of Reynolds
number explored by Vanyo is too restricted to see the predicted logarithmic. dependence on Ke.
Surface roughness is an additional complication which can increase the turbulent torque, but shall
not be considered further given the many other factors which affect our results.

Poirier [1 988] argues that at core pressures core viscosity 7 = pris close to the STP value
for liquid iron near its melting point (0.06 P ), athough this is uncertain by at least an order of
magnitude. Pinning the inner core boundary at the melting point, he estimates that 7= 0.03
1" at the CMB. Gans’ [1972] estimate for 5 based on Andrade’s theory of liquids is similarly low
(0.04P <9< 0.21'). in these calculations, 1 shall adopt v=17/p = 0.01 cm?s~?, although changing
this number bya factor of 10 changes the major results by only 10%.

Turbulent CM}' has already been applied to the moon [Yoder, 1981; Dickey et al., 1994] to
account for an apparent 0.26" offset of the spin axis relative to its expected mean planar alignment
with the plane formed by lunar and earth orbit norinals. The lunar core Re~ 3 x 10°, L

Uo

%, and turbulent friction must be the dominant mechanism controlling the CM ¥ torque. This
model predicts a liquid lunar core radius ~ 350km that roughly agrees with a controversial Apollo

magnetometer estimate [Russellet al., 1 981].

5. Dynamical Equations

‘I'he dynamical equations describing the coupling of a fluid core, contained in an ellipsoidal cavity,
to the forced, short period nutsttional motion of the mantle are wc]] developed for studying Earth’s

nutations. However, the general approach approximates the precessional motion as a zero frequency
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tilt-over mode in calculating the core nutations and its effect on the mantle. A more complete set
of equations has been derived by comparing the linearized, rigid body development [Borderies and
Yoder, 1990] and the core mantle equations derived by Sasaoet al. [19'77, 1980]. See Appendix C
for more details. One must take into account that the rigid body equations refer mantle nutations
to an inertial, space-fixed reference frame while core response is usualy referred to a body fixed
frame in which the nutations have nearly diurnal frequency.

g’ here are distinct advantages in expressing the core polar motion minthe space-fixed reference
frame instead of the body-fixed frame as is usually the case. First, p1ecessional motion is a slow
process instead of nearlydiurnal and second it is easier to estimate the correction caused by the
core 011 the forced and frec precession of the mantle.

The off-axis spin components 7 = w, — iw, are related to the p variable (= sin ce™i) by

d . d ;
o PR ) A(wi—¢)
m COS € € - 4 sin (dtg € (32

(

or

Dp = ine ! (33)

Here 1) is the time operator d/dt.Sasao ctal.[1 980] derived the following core equation relating

changes in 7 andm, in the body-fixed frame.

(D iw(1+ c0) -1 K)fig = - Din - D, (34)

where ¢, = (C. - A.)/C.. The core m, is the difference in angular velocities of core and mantle
(e = wg - iy —1). The function €4;, which shall momentarily be ignored, is an elastic deformation
correction.

Define the equivalent representation of core spin m, in the inertial frame, m..
me = mee ! (35)

The core equation in the inertial frame is therefore
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(D +io.+ K )m.=-- (D +iw)Dp, (36)

and o, = —e.w is the unperturbed, free core nutation (FCN ) frequency. The above form explicitly
shows that for a slow precession (with frequency s) of the whole-body pole, the core response is of
order s/o. smaller. Also, anearly diurna wobble with frequency (-w + s) results in a core response
which is s/w smaller.

The relative obliquity of core and mantle spin vectors is obtained from (155) and is

M,

w

(37)

sin Ae =

Sasao et al. [1980] also derived the following equatiorn for the whole body, here transformed to

the inertial frame.
(D 41w 4 ie,w)Dp -} D(omne + G¢ ) = iewde ™ (38)

with e, = (2C — A— B)/2C.Coupling of 1the mantle to the core is proportional to the ratio of the
moments of inertia, ach/C.Now,$ is an external forcing function proportional to # — p. This
function can be identified by comparing with Borderies and Yoder’s [1990] result for a rigid body.
One finds

icode™t = 3/2(nfw)? {ea(p — P) - e~ (g - Q)} (39)
with g and Q the complex conjugates of p and P, respectively and

L-A

2 e (40)
_Z -
Through this process, a more accurate, whole-body dynamical equation is recovered.
(1 - eo)D? -t w(iD -u. - iK,,)) p-
22 (3n2ge~ ! — D[e~ 't Dg)) (41)

=—alDm, - wo (P~ EQ%Qe—izwt )
€
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Here,

](ta = ](tp -+ A’ap (42)
and
2
o=~ e, . (43)
2w

Examination of Eq.(41) forits free solutions in the limit @« — O reveals two modes: a nearly diurnal

mode with frequency

o143 (2)) it eater em (14)
and a slow mode with frequency o,.Theformer mode i« the equivalent Venusian Chandler wobble
and the latter mode (sometimes calledthe ‘tilt-over mode’) isthe unperturbed (by the core) free
mantle nutation or precession (FMN).

This second mode (}FMN) qualifies as a so-c. alled free mode everthoughits frequency and
precession axis depends on Sun’'s gravitational t orque.l.ike other frec modes, ’'MN has arbitrary
mitial conditions and can damp in response to internal friction. Besides, the solar torque increases
the wobble mode frequency in the body-fixed frameby (1 + g(g )2), and this additional boost does
not change our sense that the wobble is still a ‘free’ mode. The semidiurnal term proportional to
€22 is unimportant for nutational motion and shall be her eafter dropped.

Elastic corrections are related to 7, ¢ and i, by

it

mv(K(m — a) + oym,),

my (3 - ) + Fine).

€2
(45)

n

Coy
Sasao et al. [1980] define factors similar tok,5 and B, and these factors are solutions to elastic
potential deformation due to either tidal distortion or CMB distention dueto fluid core nutation.
All have about the same magnitude as the L.ove number k, (in fact, %= k), and for an earth-size
core =~ 2k,and g~ 0.6k,. The parameter m,= ﬂ;—gf—‘Mpff—?gﬁx 10~8 (surface gravity g = 887

cm S-2), and therefore ¢21and ¢4yare negligible compared to the observed ellipticities for Venus at

the present time.
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The eigenfunction equation for an unforced motion proportional toexp(—iyt) is

(v oc+ 1K) (—72(]'%) + w(y - 0o — i]x'w)) = ayi(w - 7)

(46)

The solutions for the nutation-like modes are (neglecting the higher order y2(1—¢,)and ay3 terms
in the above equation)

Y+ = YRt 714
The real and imaginary components arc

(47)
a4Va 15
Oc+ 0,4 -
h L (48)
e 20— a)
] ( ppemCl 2y o0 20) - o )
1 i b [
Mg s —— \/(04.\/—+ ) _(: \/2"*\/“2”'2 (49)
2(1 - o)
with
a = (Uc - Uo) - (1\'0 + ](ta)Q + 4(1(0600 -+ N Il"ta), (50)
b=-2K(0o.—O.(I -- 2¢)) - 2K 5(0.(1 -- 20) - ).
First, consider thecase where K,,= K.= O. Thetwo solutions are

(Uc (0c + 0,) & Loz 00)2
V4 20 =a) (51)
If 0.> 0, >0, thenthe + and — signs correspond to the FCN and FMN modes, respectively, The

4aacoo

most intriguing result is that the FMN and FCN frequencies arc precluded from being identical

If CC >> ¢, and the k. and k,, factors are nonzero,t hen the two frequencies are

10 (14 a)(1 - i(K. - aKy))




2
Yor K. << o.,the FMN mode has a real frequency (neither damps 01 grows) if Km»a(gg) K.,=0.

Now KC is itself proportional to sinA¢ and from (36,3-/),

. Jo .
Ace e ol
S|n ¢ \/(ac - 0_0)2 +- ]{'czn [T 1] (54)

A stationary end state is achieved when the ratio o,/0, satisfies

o (?_0)3 (Eﬁ)z o Ko [Bkyn MR Mg (’?)3
O w) T Ky \2Q0 w2C M \a X

(55)

82v2 1

457 K2 sin ¢
The core friction parameter Yo in e xige was derived earlier in (25 ). The Reynolds number

us Uo
Re from Lq. (20) is
Re o wit —(0-——> sin? ¢. (56)
v \a,

The left hand side of (55) is reasonably well determined andindependent of parameters on the right
side. Plausible values for the input parameters are C/M k%= 0.336, k2 0.25, Q =50, sin ¢= 0.036
and Ky, >~ —1.4K,.The resulting value for the right side factor in(55) is 0(53)3(59 )~ 1.5x 10™".

The constraints imposed on Venus structure suggest that 0.070 <o < OT12 as0 compared with
ag~ 0.114. Adopting R.=3100km and o =0.084 and »» = 0.01cm?s - *, we obtain Re= 2 x 107,

uo/us> 11, 0./o,~ 17 and

€.~ 29%,= 3.9 X 10-* (57)
Since ¢. = (a? — c2)/(a®+¢?)~ (a.-- ¢.)/a., the difference in core equatorial and polar axes is
1.3km. This is to be compared with earth’s non-hydrostatic core ellipticity, Ae,= 1.2 x 10™
[Herring et al., 1986], whole body Ae,= 3.15 x 10~*[Yoder, ] 995] and ratio Ae./Ac,= 3.8.
Clearly, afirm determination of ¢ from observation can be combined with a modestly firm estimate
of the tidal and core parameters to provide a useful estimate for the unknown e. , since it depends

on the cube root of these controlling factors.

21



The above analysis conveniently ignored the nonlinear aspects of the! turbulent coupling, and
omitted the contribution the forced obliquity has on the average |sin Ael. Yor large ., the time
average core obliquity due to the retrograde frequency orbit terms is |sin A€gorcea] ~0.0006(00/0)
and is 1/6 smaller than the free component. Clearly |sin A¢| should depend on the RMS sum of
both forced and free contributions, and the turbulent coupling parameter has a minimum value
set by [sin Aegorced|. ‘I’his complication will be largely ignored in the remainder of the paper, and
|sin Ac|is replaced with its free component. However, the following example is a case where the
forced obliquity dominates.

So far, I have assumed that Venus core is oblate, but it is obvious that a slightly prolate
core would have negative FCN frequency. Therefore, one should ask whether adjustment of core
parameters could entirely account for obliquity as a near resonant response. First consider the core
and mantle response [Sasaoet a., 1977] to a unit forcing with frequency s(i.e. P’ = e **!).From

eqs. (36, 41), the solutions for core and mantle are
M =5 == ——m— =] (58)

po meemn o, (59)

The maximum value for the imaginary part of p is achieved when o.=s(1—as/(s—0,)), and if

we ignore K., then

%. (i+ K.)
= 0 e 60
PE TR (60)

with K. = K0, — s)/(as?) > 0. The core responsc at the peak is m,= ~i0,/(sakK,). Clearly
K. must <1 for a strong core effect on the mantle. Figure 8 displays the response curves for p
(p = p, - ipi) as a function of o./s for several vaues of K. with fixed 0o= 455" yr=?,s=—18.85"
yr~land a= 0.15.

Figure 9 plots the predicted pole location for o, in the range: -6.5" > o, > —19" yr~due

to both prograde and the retrograde terms and with K. = 6 x 10-"yr~'.This fixed value of K.
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(again ignoring the potential dependence of K, on the core nutation amplitude) was chosen such
that the curve passes near the observed pole position at ¢. = --18.5" yr~'. However, the required
core friction parameter K.~ 6 x 107is a factor of ~103 smaller than K.(turb) (see Eq. (28))
given that for this case the differential core-mantle obliquity is ~1/alarger than the forced mantle
obliquity. Although this possibility presents an interesting physical limit, it can be safely discarded
as irrelevant to Venus.

Finally consider the predicted range of obliquity damping rate (7,. ) for both Venus (figure 10)
and Earth (figure 11) restricted to the contribution from a fluid core of arbitrary viscosity. The
contributions to damping from toroidal shear driven by nutation include 1 ) turbulent friction (the
dashed lines are based on Vanyo’s experimental results), 2) thinlaminar boundary layer friction
and 3) whole body, Stokes shear. The peak in damping rate occurs when K.~ o..The difference
in peak position and amplitude for Earth and Venus are due to thelarge difference in the frequency
ratio o,/0. , the difference in rotation rate and core FCN frequency.

The obliquity growth or damping rate due to a solid tide in a viscous core is estimated using

3 19_vs
3N MR*H, 5 SR
—

e (61
4Cw . 19 vs

where the angular flexing rates s; are 2n -- 2w, 2n -- wand w, respectively. The form inside the
sum is appropriate to that of a uniform body and is proportional to Q! while 7 is the equivalent
invisid core love number (see €q. (45) and table 6 caption). Tidalshear of a Vviscous core can
either cause damping or growth for Venus, depending on whether the viscosity favors either the
semidiurnal s2 tide (s;=2n -- 2w) or diurnal K1 tide (s;:w), and because these three frequencies
are well separated. The damping band is absent for Earth because thePl(s; = 2n - w)and
K 1 tide frequency are quite close and they almost cancel independent of core viscosity. However,
Venusian obliquity damping reguires a narrowly tuned cor e viscosity near ~ 2 x 10°cm’s-l, while
significant obliquity growth rates occurs over a much wider range of core viscosity and can achieve

much higher peak magnitude. Also note that there is a wide range of core viscosity between the

nN
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two peaks where the core is effectively locked to mantle precession (and as far as this measurement
is concerned, Venus core appears solid) while atthe same time has little effect on tidal flexing

amplitude (and hence the Love number k2) and thus appears liquid in response to tidal flexing.

6. Geophysical Consequences

The observed second harmonic gravity coefficient J2 = 4.46 x 10-6 arises from three factors: 1) the
CMB ellipticity e, = 3.9 x 10*, 2) surface topography with coefficient 7,9 = 5.6 £ 0.4 x 10°
[McNarnee et al., 1993], (and which may be partially compensated by a factor f (O< f < 1)) and

3) an internal density anomaly poo(r) averaged over the mantle.

3
Jg = —
2 55

(ps(] = [+ fH)rype+ /:j pz(,r"dr) + a~;; M}ﬁcc (62)

The isostatic factor H =4d /R (for Airy or “iceberg” style compensation ) depends on the depth
of compensation d, which for Venus is <200km. ‘I’he correlation of topography and gravity is
high except for t he second harmonic coeflicient. This seems to suggest that the factor f is close
to 1 for degree 71 greater than 2, but small for degree 2. However, the explanation for the gravity-
topography correlation (n > 2) which best fits the variation of admittance with harmonic degree
is that of dynamic support [Kieferetal.,, 1986] and which alows foran undetermined increase in
viscosity with depth [Bills et al., 1987]

Despite the low spectral power in the gravity at degiee 2, there is some tectonic evidence for
hemispheric symmetry [Morgan and Morgan, 1991] or asymmetry [Suppe and Conners, 1992] in
the large scale tectonic and non-crusts] geoid patterns [}1 errick and Phillips, 1992] which is nearly
aligned with the rotation axis and may be due to an underlying second harmonic convection pattern.

Dynamic support implies a causal relationship between the boundary mass displacements and
the counterbalancing density anomaly. 10 clarify this, replace the above expression with J,=

J2a + J2, + J2c, where the identification with each component is obvious. The relative ratio {J; :

Jaa: Jo,: Jac} which satisfies observations and the above relationship is
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{45 : 18(1 --f): ~27+1&f: 13.5}. (63)
Instead of a volumetric anomaly J2,, consider an internal surface density anomaly at depth o
with contribution J20- In a dynamic model in which Jzo (R, )drives convection, one expects that
as R, approaches either boundary that the deformation of the opposite boundary, and the total J2
vanishes [Richards and Hager, 1984]. For a simple earth model with uniform mantle density and
viscosity and an anomaly J20 nearthe CMB, the predicted values for the following ratios are (from

figure 6a in Richards and Hager, 1984)

2~ 0701 - 2); 2 o qs, (64)
where z = (R, — R.)/(R-- R.). Applying this model to Venus suggests that the crustal compensation
factor f~ 0.6 and z ~ 0,05. Replacing the surface anomaly with a CMB boundary layer, volumetric
anomaly will about double the required z for a boundary layer thickness of ~ 300km. A thermal
boundary layer ~ 200K hotter the mantle above it and with ~100km variations in its thickness
could isostatically compensate for the ~1.3km CMB topography. The inferred crustal factor should
not be taken too seriously given the obvious simplifications of the model and the possibility that
near surface contributions could dominate. However, the fact that the inferred boundary layer
thickness is comparable to earth’'s D' layer is very likely significant, and examining properties of
earth’s D" obtained from a variety of sources suggests differences.

inversion of tomographic data for both density and boundary deformation initially predicted
2-6 km relief on the Earth’'s CMB [Hager et al., 1985, Hager and Richards,] 989] implying that the
nonhydrostatic ¢, ~1 x 1073 However, the observed, excess ¢. is much smaller (~ 1.2 x 1074)
and is inferred from its effect on the retrograde annual nutation[Herring et al., 1986, Gwinn et
al., 1986]. This result has been independently confirmed from analysis of the diurna signatures in
gravimetric data [Neuberg et al., 1987]. A model to account for the decade scale changes in length

of day via topographic coupling ( fluid velocity induced pressure acting on the CMB topographic
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“mountains” ) predict length of day changes that are ~6 times larger than observed. Therefore, Hide
etal. [1992] infer that CMB relief must be ~6 times milder. The tomographic data is explained
by introducing topography and density contrast at the top of I?”. in order to satisfy convection
model predictions (in fact, to allow the CMB to partialy relax), the viscosity within D* must be
significantly lower [Hager and Richards, 1989] than the lower mantle viscosity. Applying the same
train of argument to Venus suggests that Venus 1" laye: is significantly stiffer than earth’s CMB
boundary layer in order to maintain degree 2 bottom topography. This result will have a direct
bearing on interpreting differences in convection style and heat flow from the core. For example, the
large e, and €c/€o ratio observed for Venus are potential indices of episodic convection [Turcotte,
1993] during the quiescent buildup stage. It may be, that in a geologic time sense, convective

overturn is eminent.

7. Tidal Histories

How certain should wc be that the obliquity has achieved its fully damped state? This question
cannot be unequivocally resolved since both the initial rotation state and tidal models are insuffi-
ciently well known to recover a unique tidal history. However, one can investigate a wide range of
models and determine a probable history. The most significant difference between this study and
previous investigations is that the CMF model is more accurate and displays a rapid increase in
strength as Venus approaches its present spin state. In addition, Venus can evolve from prograde to
retrograde rotation, and initially large obliquities, for a special suite of initial conditions and atmo-
spheric tidal models. To avoid further confusion, 1 should again emphasize that 1 have adopted the
convention that the spin is negative and the present obliquity is small. An equally valid convention
is to choose spin to be positive and obliquity near 180° .

The total CO is a sum of a quasi-rigid part due to internal strength and convection and a
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hydrostatic part due to rotation:

€, = e,(rigid) + e,(hyd.). (65)

The changing hydrostatic contribution e,(hyd.) as a function of rotation is approximately (assuming
C/MR?= 1/3)
39w’R
eo(hyd.;T') = :1—1—-‘:) —

g (66)

=6.7x10°8 (ﬁ%vj)lz

and contributes only 0.5% to the total at the present. The core e, similarly is made up of these
two parts, and has e.(hyd.;T")~ 3/4 ¢,(hyd.;T") for an earth-like core.

The ratio o,/0. =1.5(¢o/e.)(n/w)?, and the hydrostatic contribution to oblateness due to
rotation is small as long as the rotation period is > 20d. Since the contribution from CMF is
proportiona to(o,/0.)3w,the damping due to CMF was dramatically smaller when Venus' rotation
period =27/ |w| was smaller, athough this reduction can be partialy counterbalanced by a change
in ¢o/e. to more earth-like values ~ 1/10 during most of its history,

For large obliquity, the sum of solid tide phase lags in brackets defining the obliquity rate factor
Ky, in eq.(14 ) should be replaced by [Dobrovolskis,1978; appendix D]

c56(2n - 2w) 4 s§6(2n + 2w) + ¢3(2 -- c])6(211: w)+ (67
s3(24¢)6(2n + w) — 36(~w) — -;-sfclé(»Zw) + 33%’6(211)

Here ¢ = cos(c/j) and s; = sin(¢/j). For obliquity near 90° and |w| >> n, all the terms either
vanish or tend to cancel in pairs, except for the semiannual Mg, term with lag é(2n). The above
angular dependence of K, for phases é(s) which are constant and equal in magnitude and with
lw] >>71 is

(1 + %sf)6(2n - 2w) + %s?é(?n) (68)

The solid tide semiannual constituent (o 6(2n)) always tends to drive the obliquity to the prograde
state, However, we shall discover that the equivalent atmospheric term may dominate and can cause

Venus to tidally evolve from a prograde to retrograde state if the initial obliquity is sufficiently large.
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The tidal spin deceleration does not depend on the §(2n) phase lag and is much less sensitive
to obliquity for |w]>>n as long as the phase lags only weakly depend on frequency. ‘I'he solid

tide lag 6(2w - 2n)in (13) is replaced by

cB6(2n — 2w) — s§6(2n + 2w) + -‘lis‘]’é(—Zw)-{

] (69)
2 (c3s26(2n - w) - s3s26(2n -+ w) + 52 26(- w))
for large obliquity. The above angular dependence of Ky is
(5/8 4 3/4¢% - 3/8ci)b(2n - 2w) (70)

for constant é(s) and |[w| >> n. The atmospheric tides are modifiedin a similar manner with é(s)
replaced by 61'(s). Note that 6 P(s)ox SH.

The tidal equation for spin deceleration due to CM¥ js obtained from [Goldreich and Peale,
1970]

d d
aw(;Mpn:wtan(a((;Mp. (7D

andis derived from the condition that the total component of spin momentum normal to the orbit
cos ¢Cw is conserved. Thisis not entirely obvious since what is really conserved, if no other planet
except Venus is considered, is the sum of the orbital and spin moment um, of which the z component
is

cos I Mna®+ coseCw. (72
The spin-orbit interaction couples the two parts, but one can show that this results in a variation
in I that is, at most, a factor R‘%}Ef smaller than that in ¢, while the semimajor axis a is unaffected.
Hence the above approximation [eq. 71] for the secular change in spin is quite accurate. The fact
that cos ¢Cw is nearly conserved once CMF begins to dominate implies that if the initial obliquity
is large, the obliquity damping rate is initially proportional to w8 compared to a solid tide xw™?.

Two additional modifications of the linearized equations must be included before obtaining tidal

histories. First, the FMN frequency must be modified for large obliquity and is o, cos €. Second, I
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have attempted to account for both rotationally induced oblateness and a more earth-like value for
the ratio e,/e. during most of its history. l.aminar CM]’ begins to dominate over turbulent CMF
for Reynolds no. ~10'%sin? e(w,/w(t))® < 10°, but this occurs in a regime where CMY is aready
small compared to tides.

The relative rate of damping of obliquity and spin are shown in Fig. 12 for a suite of initial
obliquities and an initia spin 30 times the present rate. A separatrix (dotted lines) delineates
the two types of history: 1) Evolution from prograde to either prograde or retrograde orientation
and 2) evolution from prograde to prograde end state, The initial separatrix obliquity is ~ 45°.
This maximum can be reduced further either by starting the system with faster spin or, more
controversial, by resonance excitation as suggested by l.askar and Robutel [1993], ¥ig. 13 displays
the history of the rate o, cos ¢ for several of the lines which begin with prograde orientation. Note
that these lines have a near] y flat history over aconsiderable range t hat happens to coincide with
the frequency band —4 to --8" yr~!. Thus it may be possible to chaotically drive the spin to high
obliquity early in its tidal history via these resonance terms and allow the semiannual tide to drive
it toward a retrograde state. It may be that temporal, stochastic variations in e,(rigid) aso are
essential. Iurther study shall determine if evolution to a retro.grade end state might be almost
independent of initial conditions for a body like Venus.

The contribution of the semiannual tide is essential as demonstr ated in I'ig. 14 for which the
semiannual contributions from both solid and thermal tides are omitted. It is not at all certain that
this atmospheric component dominates throughout Venus history or is unaffected by the changing
dynamics arising from such factors as rotation.

However, the potential dominance of the atmospheric Mgs, tide dots open the possibility that
Venus may have started with a prograde rotation much like the other terrestrial planets. One
can imagine a largeimpact on Venus which, unlike the proposed impact, creating the Earth-Moon
system [e.g. Newsom and Taylor, 1989], dramaticaly tilted the spin axis to greater than ~45° and

perhaps slowed the planetary spin to say 5 10d. A slow rotation guarantees that any debris disk
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is inside synchronous rotation orbit (for Venus, a 5d synchronous radius ~20R) and will tidaly
evolve any primordial satellite onto Venus [Ward and Reid, 1973].

These histories demonstrate the dramatic onset of tuirbulent CMF once the spin is sufficiently
slow (<3 times its present value). This result is quite different from other studies which fail to
consider core ellipticity and find rapid evolution of both spin and obliquity due to CMF early in
its history [Dobrovolskis,1980; Shen and Zhang, 1989]. In any case, one should expect that the
obliquity has presently attained near equilibrium if the spin has also achieved near equilibrium.

The last issue is the response time of the obliquity to ongoing changes in e./¢. , given that
spin and obliquity have achieved near equilibrium. If e,/e. were halved, the spin equilibrium is
unaffected, but thenew equilibrium obliquity is increased by a factor of &. The evolution of the
obliquity is governed by t=(1/K)In|72/8(1— )|, where z = ¢(t)/e(c0). Since 1/K¢a~5 x 107yr
for the parameters chosen here, damping is reasonably 1 apid on a geologic timescale (z = 0.9

when t=2/K,).

8. Obliquity Resonance

An aternative explanation for Venus obliquity is that it may have recently passed through or is
presently locked in a obliquity resonance arising from some very small orbital variations in incli-
nation driven primarily by a fourth order (272 cos 2w)interaction between Earth and Venus. The
complex orbital perturbations in inclination have maximuin amplitude ~ 1 ()5, but can still produce
significant obliquity perturbations as some terms have frequencies near the prograde FMN mode.
Although such terms are formally included in modern theories of planctary quasi-secular pertur-
bations, their amplitudes are significantly below usua cutoffs for published results. Fortunately,
one can recalculate the dominant contribution with milimum effort. The method is described
in appendix B. There are 8 primary modes affecting orbit eccentricity and inclination and when
combined through the 2w couple, These result n 288 distinct frequencies affecting the Venusian P

variable.
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The individual eigenmodes themselves decompose into several sidebands. Finaly, the eigenfre-
quencies appear to wander by as much as 0.1” yr—'on time scales of order 10°yr due to internal
resonances which produce chaotic behavior. The amplitude, frequency and phase (epoch J2000) of
the primary terms with amplitude greater than ~1x 10~5 arc listed in table 3, as are all terms
with frequencies in range 44" yr=!to 47" yr~! and amplitude greater than 3 x 107

In order to analyze the nonlinear effect of these ter ms, wc shall develop a dlightly different

formalism. Consider the secular part of the solar disturbing function R, affecting obliquity.

1 .
R = ;ngn2M.I{2(] ) (—g cos? € - -;) (73)

where the obliquity relative to the orbit ¢ is related to the obliquity relative to the Laplacian plane

¢ and orbit inclination 7 by

cos€=cosccos ] +- sin E sin 1 cos(§2—¢). (74)

Replacesin I cos §2 and sin 1 sin Q with the sum involving just the 2w terms (P(2w) = 3" Lie™ )

and expand to first order in J;. The resulting approximation is

1 . ~ 1
Re = — 500 (cos2 1 cos? € + sin 2¢ Z I cos(p — ;) 3> (75)
Here, define o, as
o 3J2712MR2 2 _,3/?
00 =3 o (1-¢%) . (76)
Consider the pair of canonical, action-angle variables {z,@} , where
z = Cw(cose - 1). (77)
The corresponding dynamical equations defining the motion are
d 0 1 0
— == ——Rey = —— R 7
dtd) Oz to CwsinfﬁcRQ (78)
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265
= 0, (00321 Cose - C;Sn :L]j cos(¢ ;)

a0, d
i’ T 8 0T @ (79)

= 0osin2¢ 3 I;sin(¢ — ;) +

-..ms

dt
and d%xs includes any secular torque due to tides or CMF. The equivalent equation for Eis

d
P

d .
;12( = —0, COSE Z]j sin(¢ - ¢;) 4

(80)

One reason for explicitly introducing the{z, ¢} formalismis that determination of capture
conditions is easily deduced from previous studies of orbit-orbit resonances in which a secular
acceleration slowly drives the system toward exact cornmensurability. The primary deduction
that can be applied is that capture mechanism relies substantially on the increase in = during the
transition phase from circulation of the angle variable ¢ to libration of ¢ about a fixed point. Define
¢, asthe mean free obliquity shortly before capture. Now the forced obliquity due to the retrograde
termsin orbital P> already considered might belargerthau this value. However, these terms should
not be a significant factor given the large difference in circulation frequencies associated with this
forced part and the prograde FMN mode.

I order to make a more direct connection with orbit-orbit resonance studies, consider the
following set of transformations which result in a dimensionless Hamiltonian. Assume that only

a single term with driving frequency ;1‘%1/11: in the expansion of the orbit variable P affects Venus

figure. First,definef, ¢, and & as

7=to? (81)
¢= ¢ ¥r, (82)
1—7e T —2z sin? ¢ ©3)

T e Y — e —
Cuw(cose, — 1) 7 Cwe2 ™ sin¢,’
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T=1- 00"1(%-1/);( . (84)

The Hamiltonian /{ and dynamical equations are

H = (E + cﬁ))z - 4Ikc;3\/l — Ecosa, (85)

N

d~ o
.d_t~¢ = - 5511 , (86)
(%5 %}1 : (87)

This form is identical to that derived by Yoder(1974) (also see Peale, 1976 and Yoder and Peale,
1981 ). | find that unit capture probability (#.=1) occurs if the coefficient 47k¢5° = 2//54. Define

a critical ¢,

. = V6LV, (89)

Then one finds that #, = 1 for ¢, < CC and P, < 1 for ¢, > ¢.. Capture probability falls off

rapidly for ¢, near ¢.. For example, F.~ 0.25 for ¢, =1.4¢.. For ¢c >> ¢, ,

’ 3/2
P % e 033 ((-> (89)

Only four terms within the expected frequency band have e, comparable or larger than ¢, (see
table 3). The numerous driving terms which have 1;<1 x10~¢ can be expected to have amost
no influence on Venus' obliquity.

Next construct the approximate second order equation obtained by taking the time derivative

of the ad—th equation and retaining only the major second order termsin J;.
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L6+ 02sine B($) T 1; sin(¢ — ;)

—q + qine—d-e 0
- €0s €200 + o SiNE ey
with
1
B(¢) = [] + pr e z]j cos(¢ — l/’j)] (91)

The term proportional tod%-ao includes changes in spin, J2 or orbital eccentricity of whatever origin”
Again, consider the case where a single driving frequency-$1'~ dominates and ;id[¢"—‘—’f['l/)k-]f the
lock is established, thelibration amplitude is small, and the secular torques are relatively small,
then the angle% oscillates about O with libration frequency Jf,
i o150 5 eali. o2)
Using I;, = 3.0x 10°, ¢ = 2.1° and 0,= 44.22" yr~7, then B(0) = 1.6. The libration frequency
k=13 X 107%0, = 0.058” yr!, corresponding to alibration period of 22 x 10° yr.

Next, consider the stability of the potential lock against, secular torques. Clearly,

. d . d
02 sine I; > co SEdT Oo - oo Slnsafs (93)
to prevent the secular terms from sweeping the figure node angle right through a given resonance.

The individua constraints in terms of relative importance for the 4}Z4S111 argument are

ZfiJZ <1 x lo-*%yr *,

71———@53 <2x1077yr 3,

sinedt - (94)
1 d

oo 3% < 2.4 x 1070y,

%%w‘ < 2.4 %107 10yr-1,

The constraint on spin rate might be exceeded if atmospheric and tidal torques are not in
balance. The solid tide rate is 1.1 x 10-8/Q yr~! and exceeds the above bound if Q < 80 if

wc ignore contributions from the atmosphere. Clearly, because of this constraint and the small
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magnitude of &, for unit capture, these 2w interactions will not have a significant effect until Venus
is nearly damped to its equilibrium state in both spin and obliquity.

The constraint on obliquity rate comes into play only if CMF is dominant and e,<17e,. Note
that this bound is a factor of 1.7 smaller than the estimate based on the balance argument. For
the resonant excitation to play any role, then e, > 17¢, and we are forced again to accept a large
CMB ellipticity.

The constraint on o, limits the amount that the precession rate could change without domi-
nating over the largest 2w interaction to about %1”y7~? over 1x 10% yr time scale. Thus, only
nearby sidebands might have excited a significant obliquity.

The constraint on the Jrate is the most serious and implies that a lock is possible only if
Venus is now tectonically quiescent. ¥or example, if tectonic activity on Venus is episodic on time
scales of 3 —5 x 108 yr, then one might expect that J2 varies by a factor of 2 (larger or smaller) over
the same time period. Thus we might expect that the present rate is of order 5-- 15 x 10714 yr~?
in amplitude or a factor of 5 — 15 larger than the above bound. Sincethe obliquity damping time
scale < 30 x 106 yr duc to CMF, Venus obliquity can retain a significant remnant from a temporary
lock only for those terms within + 1“ yr—! of the p1esent value for o, . The frequencies which
might have been encountered since the last resurfacing event must be considered are extended to
43"yr~1 < fi < 47"yr~1. Figure 6 shows the amplitude of terms within this range, and we can see
that the number of significant resonance lines are relatively sparse.

Consider the case where ~§’-:7¢ , on average, vanishes. The secular eguation for the obliquity is

d 1

d
¢ = — col €0, 95
pre oy col € dta (95)

and obliquity increases if J2 increases or spin decreases in magnitude. 1f Venus is presently locked
with the %243111 argument (no. 29), then an increase of only 0.03" yr~!in o, could account for
the observed obliquity. If dJz/dl~ 2 x 10~ yr~ and this is the only mechanism for secular

change then the lock would be only 15 x 10 yr old. Another possibility is the chaotic wander of
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the %4311 frequency could itself excite the observed obliquity.

9. Numerical integrations

Numeral integration of the dynamical equations has been performed, covering a wide range of
initial conditions, tidal torques and changing J,. The purpose of this exercise is to show explicitly
when the prograde rate terms are important and show what kind of conditions could account for
the observed obliquity. There are two interesting limits: 1) The maximum CMF torque which
can compete with resonance without totally overwhelming it. 2) The conditions for excitation for
the case where the iron core is completely solid and the combined solid and atmospheric Ky, is
negative. In order to compare numerical integrations with the present-day phase and amplitude of
the free obliquity, the equations are integrated in the rotating frame of the near resonant driving
frequency, dv;/dt. Resonance passage occurs where d¢/dt —dvs;/dt reverses sign and can change
the amplitude and phase of the free obliquity which is fixed relative to this frame. The p, and py

variables in this frame are
pz == sin ¢sin(¢ — -U';l;it),
. (96)
py = sin ccos(¢ — 11).
The only limitation is that non-resonant terms will generate small oscillations whose phases do not
match those of the present day, but one can visualy adjust for their contribution. The following

pair of equations omit the FCN mode as it damps so rapidly and are accurate for small obliquity

variations. J
— - — — g ahy J K 1- ._SE .I,E
dtpr-— (00 Cos ¢ — 4; 1/’1) Py -} K 1a( S pa -
P
~003.; ]J-sm(&?'—dg: ¥;),

d d Kio(1- 225 )p

—p= T 0,C08€C —=thr Pyt ta : v

dai? ( o -t ,7) sin €, (98)

. d )
~00) ;15 Co8( it~ ¥y)-
Only the near resonant terms shall be included in the sum over I; terms: (8 <7< 59 in table

3), dthough their inclusion does not significantly change any result. Coupling to the retrograde
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orbit terms and the eccentricity variations shall also be ignored. First,the effect of the retrograde
P terms (see table 2) is only 0.0063 in atime average sense and should have a small effect on
the prograde terms. Second, a factor of (1 + 3/2¢? - sin?I) which should multiply o, has been
omitted. The time average of this factor is (1+( 12-7) x10-4) and changes &, by only 0.02" yr=1.
Periodic variations in this factor are also relatively insignificant, even though they could couple to
near resonant prograde terms.

First consider the case where the core friction equilibrium obliquity is progressively decreased.
Figure 15 shows a numerical integration covering 750myr with sin ¢, = 0.024 or 2/3 of the observed
free obliquity. The system evolves from o, = 43.8” yr~'to 45.4" yr~! after 750myr by introducing
the constant rate dinJqy/dt= 5 x 107!yr~1. Panels 15b, ¢ and c1 show {p=(¥3), py(¥7)} histories
during passage for the term no. 7 =29, 42 and 48, respectively. In pane] 15b, the curve happens
to cross the observed pole location (diamond) at t=176myr before passage and after passage at
t = 306myr. Panellbc, corresponding to ¥243114 = 44.502" yr—1, passes near the pole for a few
oscillations after passage, before decaying away for ¢> 400myr. Panel 15d displays that a pole
crossing can occur just before passage and after passage, and perhaps for one oscillation thereafter.

Next decrease ¢, 10 sin¢, == 0.012. Passage through 243117 (See panel 16b) does excite a large
amplitude obliquity of 0.06rad, but it decays so rapidly that the curve fails to pass through the pole
location. Panel 16C shows that the evolution due to no. 42. does almost cover the pole location,
partly due to the favorable phase of term no. 42 and non-resonant oscillations. Figure 17 displays
an integration with sin ¢, == 0.008. We can safely conclude that resonant excitation can relax the
constraint on core friction such that the equilibrium ¢, is reduced by no more than a factor of 2-3.
This, in turn, reduces the required core ellipticit y by a factor of only 1.25 to 1.5 since from eq.[55]
the factor sin €,(eo/¢€.)® is fixed. See Fig. 18 for results with negative dJa/dt.

The positive rate chosen for J,allows for only a small fractional change of 0.03 in J,over the
750myr integration, which is longer than the 300-500myr estimate of the last resurfacing event.

A significantly larger J; rate might push evolution so fast that the resonances have substantially
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less effect. Figures 19 and 20 display histories in which sin ¢, = 0.024 and dlnJ,/dt is 4 x 10™°
and -4 x 10~*® yr—1, respectively. The largest resonance term dominates and helps to wash out
the effect of nearby terms, The large, positive Jrate also helps to retain memory of the ¥243111
excitation to larger o,, which is within the model bound. This, in turn, suggests that ¢, might be
reduced by a factor of 2 or less for some narrow range of o, within the bound. The history with
negative J,rate produces a weaker response, partly because capture into permanent resonance is
physically impossible.

So far, we have ignored the fact that the driving frequencies and amplitudes vary dlightly over
time. Fig. 21 shows the histories of 4 combinations of the prinary frequencies, based on Laskar's
[1990] FFT analysis covering a 200myr integration into the past. Unfortunately, equivalent histories
of the amplitudes (and phases) are not displayed by lLaskar,and so the following integrations are
somewhat qualitative. YFurthermore,] have assumed that the curves arc flat over the past 15myr,
partly due to uncertainty of the time interval of averaging and partly to alow some leeway in
attempting to match the excitation with the present day pole location, The adjustable parameter
for this suite of integrations is the present day value (heret=0) for o, , and we shall search for
histories which cover the pole at some time during the last 15myr.

| adopt here a negative Ky = —1 x10”°yr'l which might be justified by assuming that the
core is a Maxwell solid with large core viscosity ~ p./pw~ 2 x 10°cm?S-| such that core
tidal flexing is the primary source of ‘solid friction’ (see figure 10). The exact value is chosen such
that solid friction has a strong inverse frequency dependence in the tidal band to counterbalance
a similar, but necessarily weaker dependence in the atmosphere. The point is that a large positive
value ~1x 10-8 yr~! should have increased obliquity to even larger values than observed and
hence is not acceptable (see figure 26 b). Another and perhaps more plausible alternative is that
the core viscosity is near 106 cm?s~?! such that toroidal shear is the dominant damping mechanism
(again, see figure 10), This requires that the core is only in the initial stages of solidification and

is at this point in time a thick slurry, However, 1 shall set the toroidal coupling parameter K. = O
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since for core viscosities > 1 cm*S--| this parameter is nearly independent of obliquity, much like
Kia. Finally | adopt a small dinJz2/dl=1x10-12yr 1. A rate |dIn Jy/dt| > 2 x 10~ yr=1 will
dominate the chaotic variations.

Figures 22 and 23 display excitations for two of the more isolated lines with arguments 233151
and 234131, respectively. ‘I’he three panels in each case bracket the maximum excitation resulting
from adjusting the end value for 0,(0). The middle panel shows a case which happens to cover
the observed pole during the end stages of the integration (That is, the last 15myr). The width
(represented by the outer panels) tends to scale with the square root of the driving amplitude.
Also, there are only 1or 2 values for o,(0) which result in pole crossings in the last 15 myr of the
integration.

Obviously, the largest term with frequency 44.223" yr~! must be able to excite a large oblig-
uity, and the model excitation is much rﬁore sensitive to initial conditions than the other terms
considered. Figure 24 plots the history for o,(0) = 44.3555” yr~!where the curve passes close to
the pole several times (panel a) during the last 50myr, and panel 23b with o,(0) = 44.3600" yr—!
where no crossings occur. Increasing or decreasing o,(0) by as little as 0.005" yr—! results in a
substantially smaller or larger excitation at the end, respectively.

Of the three lines well inside the predicted band for o,(0), the excitation resulting from the
1943141 AgUMent with present day frequency 44.502" yi-1is the broadest. In fact, there are severa
values for o,(0) in the range 44.42" yr~!to 44.56" y;—! which result in pole crossings near the
present. Panel 25a displays an excitation which almost matches the pole location at = — lmyr.
Panel 25b graphs a case with dlightly larger 0,(0) and only modest excitation.

| wish to emphasize that these model integrations are sensitive to several parameters, especialy
the adopted damping factor Ky,. Figure 26a shows an integration identical to 25a except that
Ko is changed from — 1x 10~8yr~! to --3 x 10=8yr=!. This increase in magnitude is sufficient to
completely damp the major excitation which occurs near T~ —11 Omyr to an uninteresting obliquity

amplitude at the present. This increase in Ky, narrows or eliminates significant excitations from
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passage through any of these lines. If the model with high viscosity toroidal damping is the most
plausible damping mechanism, then the alowed range for v ~10¢cin?s! is narrow.

Clearly, the chaotic orbital variations are enough to account for the observed obliquity, and
it may not represent an equilibrium state. The primary limitation of this hypothesis is the very
narrow range of o,(0) where this mechanism can account for both amplitude and phase and the
smal dinJ2/dl rate.

Consider the range of o,(0) for which the excited obliquity amplitude is equal to or larger than
observed amplitude without regard to phase. The range of o,(0) which satisfy this less restrictive

constraint is

43.80< 0(0) < 44.335"yr"?
44.42< 0,(0) <44.37
(99)
44.65< 0,(0) <44.77
45.23< 0,(0) < 45.26
Given that the plausible range for o,(0) is: 44.2 < 0, < 45.6" yr~! , (here, 1 have biased o,
downward by ~ 0.5% to alow for a colder Venus) , a large excitation is observed over about 30%

of this range. Thus, chaotic excitation is a plausible explanation, but still not quite as compelling

as any involving core friction.

10. Summary

The principal result here is that we now have two plausible explanations for Venus' nonzero free
obliquity ~ 2.1'. ‘Jhe first and least constrained hypothesis predicts that Venus obliquity (like its
spin) has achieved steady state due to a large CMB oblatenesse.>~4 x 10°, which modulates the
usually dominant CMB friction. The second option is that small, near resonant excitations maintain
the free obliquity. The first mechanism is qualitatively rigorous despite possible shortcomings

related to the estimate of the turbulent core friction coupling constant, uncertainties in atmospheric

40



thermal tide modeling and Venus core size, even resonant excitation, all of which might conspire to
reduce the inferred CMB oblateness by at most 1/2to1/3. The i nferred Venusian core oblateness
is equal or greater than Earth’s nonhydrostatic core oblateness,and is consistent with dynamic
compensation within a D” therma boundary layer that is quite possibly much stiffer than earth’s
D”. This result should provide an important constraint on Venus mantle convection that must be
accounted for in any detailed model,

If Arkani-Hamed and Toksoz’ [1984] deductions concerning core solidification are valid, then
obliquity excitation should be due to the chaotic variations in the orbital plane motion. The only
limitation on this alternative hypothesis is the small range of present day values for o, which
produce the appropriate excitation compared to the uncertainty in this parameter.

Venus core was certainly liquid before the last great resurfacing cvent and hence core friction
should have had a major influence on Venus tidal history. | find that core ellipticity dramatically
shifts the timing of strong CM F friction to the end stages of tidal evolution. Finally, the atmospheric
semiannual Mss. constituent, if strong throughout history, can roll over Venus from prograde to
retrograde rotation. One interesting avenue of fut ure research is to examine the role of resonance
passage in atering the range of tidal histories. Specifically, can resonance excitation help or hinder
Venus roll-over from pro grade to ret regrade orientation? Could ret regrade rotation be amost
inevitable?

One means of resolving which of the two hypotheses is cor1 ect is through measurement from
orbiting spacecraft or landers such factors as 1 ) Love numbers k2 and 2, 2) precession rate o,
(and hence moment of inertia) and 3) the Imbar surface air pressure variations to better model the
atmospheric thermal tide (and effectively determine the solid tidal Q). The predicted pole rate (for
the p variable) is 1.1” yr=1 or about 32m/yr drift for a lander at Venus north pole. Of these three
parameters, possibly the most valuable and assessable is k,. Earth's effective k2 (including oceans)
is presently known to about a part in 500. A 10% determination of Venusian k,should settle the

issue concerning the core's fluidity given that 0.23< kz(fluid core) <0.29 while ka(solid core)= 0,17.
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The Venusian tidal potential acting on a satellite is koG Mg R3(3/2%;. ¥ — 1 /2)/(rers)3. Con-
sider the largest Doppler velocity signal from a polar orbiting satellite near the planet and in a
circular orbit,. That part which is distinct from Venusian gravity perturbations can be derived using

standard techniques [e.g. Plummer, 1960] and is

2
bv, = —--%kgll@vs (2?) sin 2A5 cos 2(Ag - §5)

s

(loo)
o —-0.5k, 8in 25 cos 2(Ag - 5 )mm /s

The 0.1mm /s Doppler signal is largely radial and separable because of its dependence on solar lon-
gitude Ag.Magellan X-band tracking accuracy for 60s compressed data is also 0.1mm/s{Konopliv
et al., 1993]. Geometrical effects and correlations may further reduce sensitivity to the tidal signal.
Still, it may be possible to dig into the noise a factor of 2-10.ven if this experiment fails to
produce a useful result, it does show that a future Venusian mission should and can attack this

measurement with a high probability of success.
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11. Appendix A: Venusian Structure Models

A suite of structural models for density p, rigidity ¢ and compressibility K have been constructed
using Earth’s known profile for each of these parameters as a basis. First, a simple earth model
(PEM; Dziewonski et al., 1975) has been converted from profiles in radius to profiles in terms of
pressure. The basic idea is that Venusian structure will closely mimic Farth’s if expressed in terms
of pressure (except for shifts in phase boundaries such as the CMB), and that any differences in
mantle parameters result from nearly uniform compositional differences or temperature offsets, to
first order. A more primitive earth model has been chosen to sidestep second order issues related to
complex boundary layers (e. g. D*), or the existence o1absence of such features as a low velocity
zone. ‘I’he crustal - lithospheric components are simplified and include 1 ) a 20 km thick crust with
density 2.85 g/cc and 2) a thermal transition zone which is matched with an earth-like profile at
30kbar pressure. Variations due to composition ox temperature differences can then be estimated
as scale changes to be applied to the PEM mode]. Variations in upper mantle composition [Basaltic
Volcanism Stud y I'rgject, 1981; Jeanloz and Thompson, 1983] shall be modeled using the molar
fractions of forsterite Mg,S04 and fayalite Fe2SO4 as the representative parameter.

The molar masses and volumes for the a, 3, and 5 crystalline phases of fayalite and forsterite

are [Sumino, 1979; Jeanloz and Thompson, 1983]

My, = 140.69 g/mole; My, = 203.77 g/mole;
(a)Vio = 43.67 cc/mole; Vs = 46." 27 cc/mole; (101)
(B)Vro = 40.52 cc/mole; Viy, = 43.22 cc/mole;
(Y)Vro = 39.65 cc/mole; Vis = 42.02 cc/mole.

Define fro asthe molar fraction of mantle which is Mg rich and adopt fFo = 0.89 as the nominal

value for Earth. Therefore the fractional change in an earth-like mantle density p» due to different
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fFo Is

] 1+ 0.427(fro — 0.89)
]pm (fFO) = I __'y(fFO_— 0'89)_‘

(102)
where y = 0.059, 0.066 and 0.059 for the a, and 4y phases, respectively The uncertainty in the
molar volume of the 8 phase is such that the y factor could be the same as the other two phases,
and therefore 1 adopt y = 0.059 for each phase. Candidate Venusian mantles with different fro
are obtained by multiplying the nominal earth model without regard to temperature or pressure
changes in molar volumes. One justification for this approximation is that the change in mantle
compressibility is about +0.8% for a change in fro of 310%.

Changes in rigidity and compressibility due to composition are determined from compositional
ratios F,(fro) and Fg(fi.), respectively. A first order estimate of the temperature and pressure
dependence of forsterite [Kumazawa and Anderson, 1969]] and fayalite are included in this modelling
and for the a phase are (units are Mbars)

H¥o = 0.881 — 0']30]_(%}\‘_' +1.80F,

jtga = 0.509 — 0.07555% = +0.70F; 109
Kyo = 1.286 — 0.15055% = + 5.00F;
Kya = 1.380- 0.228-2 = + 5.00F;
except that | adopt a value of 5 for the pressure derivative of the bulk modulus for both materials.
From Jeanloz and Thompson’ s table 1, | adopt for the 8 phase azero pressure bulk modulus of
1.67 Mbar, and for the v phase: a zero pressure £'ro = 2.13Mbar and Ky, = 1.97Mbar. Otherwise
the above expressions are assumed to hold for each phase.
Here, 1 adopt a very simple temperature profile for Venus to determine the thermal changes
with depth for above parameters, namely that at 30kbar pressure, the temperature is 1800° C and

increases linearly with pressure, attaining 3000° C at 1 M bar.

Finally, | use the arithmetic mean of the Hashini-Shtrikman bounds for a two component
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mixture to estimate the variation due to changes in fro- The explicit expressions for the rigidity

are [Hashim, 1983]

_JFo V‘a
fi = HFo+ el e, Y (104)
1 %fFoVFo(hFoiéfl_Fo)

(P'Fa . ILFO) _/LFO(KF::' %FFO)

fF(xVFo
12 == UFa + S y 105
e = 1 2(1 - fro)Vra(Kro+ Spira) (109
(MFo - HFa) pra(Kra+ §1va)
1
#(fro)=5 (i1 1 p2), (106)

while the factor F,,( fio) = p{ fro)/1(0.89). A change in fro of 5% changes F},, (fio) by Fu(fro)-

The lower mantle is modeled as a combination of the individual oxides, }eO,MgO [Jackson et

a, 1978] and Si0,[Mizutani et a, 197’ .2).

Kyeo = 1.82Mbar
Hreo = 0.59Mbar
KMmgo = 1.63Mbar
(207)
#MgO = 1.31Mbar
Ksio, = 3.46Mbar
Hsio, = 1.30Mbar

The effect of pressure on molar volume is obtained from the Birch-Murnaghan equation (with

dK/dP,=4for each oxide)

') _.§ ; ____V_L_. 5/3 ( Vo ,_>2/3 -
AR Tew [ ) .

The density and elastic parameters of the equivalent compounds 2FeO+-SiO; and 2MgO+ Si0,
are calculated using the Hashim-Shtrikman relations. These compounds are then combined again,
using the molar fraction ffo to determine composition and material properties. The corresponding

density factor is almost identical to the upper mantle expression.
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A suite of candidate models has been constructed for different core radii in range 2700 km
<R, < 3600 km and molar fraction in range 0.79 < fi, < 0.99. The variations of the scale factors
F,, F.and F, within the mantle are shown in Fig(27). Core density is adjusted by a constant

value ép, to match the mean density, using

Peore( Pf) = p&)core(],r) + 6pc (109)

Table 6 lists core radii and mean core density, §p., core and whole body moment of inertia and
tidal Love numbers for a limited suite of models. The second degrec elastic deformation of Venus
due to tides is obtained for the same suite of models and is expressed in terms of Love Numbers,
k2, hy and 1,, where h, and I, are coefficients of the radial and lateral deformation, respectively
[e.g. Saito, 1974].

Tosimplify the two point boundary problem, | first fit the core density to a quadratic, polynomial
in radius z = /R, and obtain an approximate solution for the core potential® and determine the
ratio d®/dx/® at the CMB. Knowing this ratio enables a straightforward description of CMB
boundary conditions in terms of mantle potential, stress and displacement.

Venera x-ray analysis of surface rocks indicate an eaith-like basaltic. composition, and therefore
a plausible range for the molar fraction is £5%. Earth’s solid core is only about 0.6g/cc more dense
than the liquid phase and this increase i ‘féults from both freezing and partition of pure iron into
the inner core. A larger fraction of alloying material such as sulfur or oxygen could decrease core
density. Even if this process were sensitive to pressure, it is difficult to imagine that core density
could be decreased by more than 5%. ‘I'he bounded areas indicate the most plausible range for

moment of inertia, and Love number k,based on the constraints,

0,84 < fro < 0.94,
Jr (110)

|6pc| < 0.6g/cc.

These limits constrain the following parameters to the range
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CY
& <0.341
0.331< —=;

0.04) > MCE’RZ >0.020 (111)

0.290 > k,>0.230
The range obtained for ¢ obtained by the Basaltic Volcanism Study Project is quite close to the

above bounds,

C
ou 325 < = — <
< < 0.340, (112)

(from table 4.5.11 on p 684) and a value near 0.329 is preferred.

Within the context of this single parameter fros it is curious that k,happens to be a better
proxy for core density rather than core moment of inertia or corc radius, The ability to use this
correlation to infer core density from a measurement of k,dependsin part on our confidence that
mantle rigidity profile closely mimics that of Earth.

If the iron core were completely solid, then weshould expect a significant reduction in the tidal
Love numbers, as indicated in table 6. In fact, k,isalso an excellent, test for distinguishing between

a completely solid core and a core with, at least, a liquid outer layer.

12. Appendix B: Prograde Orbital Variations in Orientation Due to the 2w

Interaction

An adternative explanation for Venus obliquity is that it may have recently passed through or
is presently locked in a obliquity resonance arising from some very small orbital variations in
inclination driven primarily by a fourth order (e2I? cos 2w), interaction between Earth and Venus.
These terms correspond to a sum of small terms which precess in a prograde sense and therefore
can potentially resonate with Venus free inanile nutation (FFMN ) or precession mode. The terms

in the expansion of the Venus - Earth disturbing function which are important are



e2C49 cos 2w+
GMMga

R(2w) = ™

. 2
sin Jg, €2,C33 cos 2wg, -
{ 2eeq (23 cos(w + wg)) J

where a = a/ag and Jq, is the mutual inclination

sin? Jg, ~ sin? I + sin? Ig, - 2sin I sin Ig cos(Q2 — Qg,).

(113)

(114)

The Venusian argument of pericenter w is measured from the ascending node on the eliptic. The

C; coeflicients are
Cyy = o (11 + 7D, -t D?,) bl%(a)a
Casz = & (-1 - Do + D7) blg(a)»
Cas =& (~1+ 3D, + D?) b3 ().
2
The operator D, is
d

D, =oa—,
“ da

and b(«a)are Laplace coefficients, defined as

oS )T
+a?-2acosz)

X 1 2
bi(a) = ;/O dar

For the Earth -Venus interaction, « = 0.72333, and the values of the corresponding 4i(«) ar

b9 = 9.992; Dbgf 46.354; DY = 403.354
2 2

blﬁ = 8.872; Db} = 46.341; 1)21'1§2 = 401 .594

(115)

(116)

(117)

(118)

The fact that the second derivatives for the Laplace coefficients are large For the Venus -

Earth couple supports the expectation that the Venus - Earth interaction is dominant [see table 7].

However, both Mercury and Jupiter are important for cer tain frequency combinations.

‘I he generalization of eq. (113) is
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GMiM;a
T 2a5 (I

where the variable Z = ¢ (—iv_the indexj <j refers to the inner planet of any pair and cc. indicates

Ri;(2w) .

CiZ!* + C;;23% 2052 7} ](1’,- TP+ ey (119)

complex conjugate. The periodic terms arising from these terms can be recovered from the suite of

equations

21 0 -

dp oy ,‘2 BEP s - E R5(2w)

dt*J 141 *

' i nie 0P 5 (120)

= - .if}-kmoe_i'd’mno,
where 1 =j or 1 = k. The components of the matrix b‘fl are

(- 28) GMy gy

B =
g 2
4 njazas

(121)

The coeflicient Fjkmo and argument .o shallbe defined momentarily. At this stage, slightly
different formalisms shall be employed for left and right hand sides of this equation.

If the following variable P; is introduced,

Pj=+/Min;aP;, (122)

then the left hand side of (120) is transformed to

d-. . -
EZI’J' + 1A Py, (123)

where the symmetric matrix A is related to B by

Mjn,a?
Aj = BY, J' Y (124)

Next, define a unitary matrix U which diagonalizes the symmetric matrix A

sk = U A, UZ;A , (125)
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such that skis the k'th eigenfrequency and Uk is,
(1) = Ui Pj, (126)

the corresponding eigenfunction (Here, the initial value of % is not unity). The perturbation of Uk

is recovered from the diagonalized equation,

d —~ .~ . 9 Ymno
dt k(1) + ispii (1) = —iUkj\/MinjotFjmnoc¥mre. (127)

The solution for Venus is therefore

¢ [Moma? Vsl Fimno
< Mjnja» UkZUkJ]'Jmno - t¢¥'mno
) _ Mjnja; fmno 128
6[2(117710) j>k—.:l \[M27l2a% ‘gﬂﬁmno ~ sk ( )
Recall that
vty =1, (129)

or UnUk; = é;; . The unitary matrix plays the role of a weighting function for both contributions

from other planets (excluding Pluto) and the 8 I-type eigenfrequencies. The function Fjmno is

! G & My

Fooo o= D D el AR P

agmno njag ~ max( ) n n)
k#3

(130)
ijSjm(C)Sjn(C)

F+CikSkm(€)Skn(e)  { (Siold) = Ske(1))
—2C;kSim(€)Skn(e)
We shall adopt Laskar’s [1990] formalism for expansion of theright hand side to find an explicit
expression for Fjmno. Laskar has obtained a solution for the normal modes using the eigenfunctions
u; (which have unit amplitude at time t=0) and eigenfrequencies S and which are related to ¥

by
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Fy7 Si(1) wi(1). (131)

This matrices S(1) and S(e) for the 8 planets are given in table 2. Laskar defines u;(J) =
emilsit+0]) and uj;(e) = €-i(s;1465) and therefore S); is the 5°th mode amplitude factor for the I ‘th
planet.

We can deduce that the argument ,.,, iS one of 288 distinct linear combinations of eigenfre-

quencies,

'(/)mnoz(gm + Gn - So)l + 0fn + 6.2 - 0({, (132)

with a range of frequencies from 1.3 to ~ 80" yr—".

There isa gap in potential excitations in the most plausible rauge for the FMN frequency
deduced from structural models, if we consider only the first order solution for the eigenfunctions.
The nearest frequency with amplitude >10-6 lies just inside the predicted band with frequency
dipoqa/dt = 44.223" yr-} and amplitude 2.9 x 10°.

Laskar finds significant sidebands to each of the u,, eigenfunctions. His expansion takes the
form

Uy = 2: Uy, e 1¢m; (133)
J

and typicaly includes 10 terms with the primary term corresponds to j= 1.
Higher order, sideband contributions to the eigenmodes tend to fill this gap and can be recovered
using

um((;)un(c)u;(]) = 2: umjunkuzlc-i(d‘m1+d>nk dot) (134)

and expanded form for the general angle argument,

Ymnojkl - Pmj + Gk Dol . (135)
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‘Jable 3 contains the terms in 6P, with prograde frequencies, amplitudes greater than 1x 10~°
(no. 1-9, 11, 29, 60-65) and all terms with frequencies between 43" yr~! and 47" yr~!. The
remainder arise from sidebands to these primary frequencies. Laskar [1990] lists the first 10 terms
for each u function in tables VI and VII. The next step is to substitute for these u functions,
expand and collect terms with like frequencies. The final result is shown in table 3 and includes
the identification numbers {mnojkl} of the largest term in this collection and the total number
(#) contributing to the total magnitude. One approximation to this process is the implicit use of
the base frequency instead of the sideband frequency as required in (128).

There are three factors influencing the cutofl employed for the sidebands. First, the accelerations
produced by this magnitude term or smaller cause atmaximum a change in obliquity of only
0.4° over the tidal time scale of 10°yr. Second, the expansion by Laskar of un(e)and uo(T)
eigenfunctions for m = 2,3,4 and .s = 2,3,4 have a cutoff that has relative magnitude of 0.01 to
0.06 of the main term. Finally, higher order terms which arc O(e?) or O(J%) smaller contribute at

this level [see Newcomb, [1 895] for explicit expansionsin Laplace coefficients].

13. Appendix C: Solid Body Dynamics with Solar Torque and Tides

The objective is to derive a linearized dynamical equation for non-axial motion which adequately
describes the I'MN and wobble modes. The introduction of fluid core coupling through Poincaré
coupling via an ellipsoidal boundary is briefly discussed as is the lowest order effect of tides. The
approach here is considerably different than that of either Peale [1 969, 1973] or Ward [1975] in that
1 obtain dynamical equations relative to an inertial frame rather than a frame fixed in the orbit
plane. Second, Iuse a Lagrangian{Smart,1961] rather than a Haruiltonian formulation and finally |
write down the equations directly in terms of order 2 gravity coefficients Cz;. The only limitation is
that the equations are linearized, although it is not difficult to obtain the nonlinear contributions.

Start by writing down the kinetic energy of rotation 75 of a body with moment of inertia tensor
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3"

L1
1, = 5 Z Lijjunw;, (136)

’v]':]
with ¢ = 1,2,3 corresponding to z,y and z axes, respectively. The rotation axis and z axis are

assumed to be nearly aligned. Make the following identifications:

3 1
Cap = —-5133 -+ 5(111 -+ Iag + I33) (137)
Caz = S(Igo — Iny) — i3 1
722 = 7 (Iz2 ~ Ins 5123

Cor= - Ij5 + tl23

where the above is unusual only because I choose a complex representation for the coefficients.

The non-principal axis contribution is retained in order to introduce dissipation. The transformed

Kinetic energy is

Cw? -t Coo(wi+ w?)
T = %MR? — Corws(wi 4 iw2) = Coalws + icop)? (138)
—-C3ws(wy - Wa) - Cy(wy - twa2)?
where w? = w? + w§ +wiand € is a dimensionless polar moment factor (€ = C/MR2).

The spin components are related to the Euler angles {¢, ¢, 8} (where# is the rotation angle

relative to the line of nodes with orientation ¢ ) by

Wy — iwy = (Dp+ 2 sjnZ,fZD()e--Ms
wy=D(04¢) -2 si nzé cos eD¢ (139)

DA, + ; (pDq - gDp)
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with A; =64 ¢. Again, D = %. Substitute the above into (138) and retain quadratic terms in p.

C((DA)? + DX (pDg - qDp))

+(C + Cou0)DpD
7 = Lype | HET C0IPPL (140)

2 —021w3(f“i)“Dq — szC"iz’\’ (])q)2

—CS] w:;CiA’ Dp = CszeiZ )"(I)p)z

where q = p*.
The solar disturbing function, [e.g. Borderies and Yoder, 1990] , when expressed in terms of

these variables, is

WP-p@Q-9)-3

—3(P-p)eile

Cao

+iCa2 {(Q —g)e~ e — (P - [))('i(21’®—i/\s)}
3 ,GMyR?
ko = 3655 , (141)

(2 + 2qP - pg — ])Q)C'Zi(L@—/\,)

+(Q ~ g)f %

+C22

+0(p*, ])3) + cec.

and“c.c.” stands for complex conjugate of the previous terms. The angle Lg is true solar longitude.
The next stage of expansion in terms of orbit eccentricity and mecan longitude is straightforward

[e.g. Plummer, 1960; Kaula, 1960; Jarr{xga:n, 1965],

|
\
\
N,
a

ntl ~ 0
(:) Ci(n-—?p)‘L - ei(n— 2p)) Z (;npq(c)ciql (142)
g=-00
where £ is mean anomaly (£ = A=), Gnp(e) are Kaula’s eccentricity functions: G,,= (1 —e¢)™ %%
G0=1-5/2c*+ ..
In order to recover the appropriate latitude equation, one must be careful to decouple it from

the axial dynamical equation. A decoupled form can be obtained from the following combination
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of Lagrangians.

0 é] i 0 0

——— . —— R D________; . ’11-

(Dal)q 5.~ 2"Papa, ~ax)’
(143)

8 i 0
= (o= — =p=—)R
(8z 2p6/\,) ©
The result is
;id—t (€ = 12)Dp — wCrae™hs ~ 2C13Dge= ] 4 iwC Dy
(P = P)Jz +- 2Cypei?(ba—21) (144)
= Sty | - emitin(q - Q)(dpemiathoh) 4 2Ch)

—ie" 2 (Crz + Cp,ei2llo=0))
The rotation angle A, is replaced with wt in section 5 to clarify how it affects the dynamics.

Tidal deformation of the moment tensor due the external mass M at position 7 is given by
[LLambeck, 1980)
MRS (7, 1
1= -k (T2 - Zay) (145)

7 77
The latitude equation is affected by solid friction through the above contributions to C21 and Ca2

(see Eq. (167) in appendix D).

i (Q - q)eirs-2lo)
CL, =~ ;;kﬂl@ (146)

—(P = p)etts
CL. ~ _l_k I [ci(’z)\s-ZL@)] (147)

with Hg = Mg /M(R/ap)3 Solid friction is introduced by subtracting a phase lag é(s) from each
of the three angle arguments with frequency s before substitution into (144).

The deformation caused by rotation is given by

1, R® 1
I = §k25 (w;wj -~ :3-6"]‘(4)2) (148)
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but is usually important for only the wobble mode [Yoder and Ward, 1979]. The additional kinetic
energy associated with the relative, nonaxial motion of a uniform fluid core in an oblate cavity is
[e.g. Lamb, 1945]

4

Ty =zA. [(M+ Dp)(m; -1 Dq) - Dplg) (149)

AR

if one drops terms of order e? smaller. Recall that the differential core spinm, is defined relative
to the inertial frame and mantle spin m = Dp.If 7, is replaced with 7, + 7’y in ( 143), the core
term seen in Eq. (36) is recovered.

Now, the core nutation is not force free because of the pressure exerted at the boundary pro-
portional toe., and the core motion is relative to the rotating frame of the mantle. The equivalent

boundary torque is

V= 1iwAeom,, (150)

while the effect of the rotating frame is to add an effective torque iwA.m. The fluid core equation

(36) is recovered from

)

d—*Tf 4 wA.m = Ny (151)

2D
If)m

except for CMB friction.

An alternative is to treat the core as a plastic solid with free-slip at the CMB. The point is that
this ‘fluid’ core has a definable surface to which one can attacha coordinate system and hence can
define a core orientation variable p. relative to inertial space. Consider a core equation like Eq.

(144), except that we shall choose an axially symmetric core. The core eguation is then
(@ - e)D? + wD)p, - wCID(CGe ™) = C7 N} (152)

Since the CMB surface is fixed in the mantle, the above C§, factor is nonzero even for a rigid
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boundary since the ‘core’ CMB surface moves relative to ‘mantle CMB.
C71Cs = ew et (Dp, — Dp) (153)

The effect of this correction is to change the fluid core wobble period to ezactly one sidereal day.
The core torque N}, acting on the core CMB depends 1) on the pressure torque arising from

the differential orientation of core and mantle and ‘2) the angular acceleration of the mantle D?p.

CINY = dew(D + iw)(p. -p) - e D?p. (154)

Notice that if p. precesses with the natural frequency o.= —we.,then the factor (1) -t iw)pe=w(1 —

e:)p.. The fluid core equation (36) is recovered from [152,1 53,1 54] if one identifies
me = (]) -+ iw)((pc’ P) (155)

The above core equation is effective] y linearized. Busse [1 968] finds that the dependence of the

differential obliquity on the FCN mode is
Oc = —ecw CoS Aesign(cos C). (156)

1 have inserted the sign(cos ¢) factor since the core precession must have the same sign as the mantle
FMN mode independent of the mantle obliquity if the core and mantle ellipticities and spins have

the same sign.

14. Appendix D: Tidal Coefficients C!_and Potential

‘nm

A genera expansion of the tidal potential is obtained here that includes the independent orientation
of both the body and the orbit. The equivalent tidal perturbation of the unnormalized gravity

coeflicients is given by

M!' R\ n - m)! »
Ch = 52 (V™ 0 ) L Y (0,9), (1s7)
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o _ 4w (u_ + . m)!
"M Con + 1 (n—m)!

where Y, (©,®) is a normalized spherical harmonic function and {©,®} are the angular coordi-
nates of the tide raising body with mass M’ relative t o the body-fixed frame of mass M.

Consider the rotational transformation of a spherical function [Rose, 1957; Levie, 1971]

Yom(©, 8) =3 i (B)e om0y, (67 F) (159

j=—n

where ais a counterclockwise rotation about the z-axis, fisa rotation about the new y-axis and
finally v is a rotation about the new z-axis. The function dj,, (8) for > mis
, (o - i)171/2
d%,(B) = (=1)i-m (n4 )M - J)! l

[+ m)(r — doy
(159)

n-4 m n—=m i m— i
Z( 1 [ :l [ ‘ jlcgn 34m 258% m+2s
n--

]S
with ¢, = cos 8/h and s, = sin 3/h.The sum over index s is limited to only terms for which the
binomial coeflicients are defined: max(O, n - j)to min(n + m,n- m). These functions satisfy the
symmetry relations

& (B) = (=1 Y7 7d%; o (B) = dyy(- 5) (160)

and therefore, of the(2n + 1)’components of d}, (8), only (n +1)* are unique. These are listed in
Table 8 for n= 2. Also

&%, (0) = 6. (161)

am

First, consider the sequence of rotations {¢,¢,8} which rotate Ynm from a body-fixed to a space-
fixed coordinate frame. This corresponds to a rotation ¢ about the z-axis, a rotation ¢ about the
new z axis and a rotation 6 about the new z-axis. ldentify a=¢—7/2,8=cand 7 = 6 + 7 /2.
The new angles {6,6} are the spherical coordinates of the tide raising body in the space-fixed

frame.
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Next, rotate the space-frame to an orbit frame in which the final = and z axes are paralel to
the orbit radius vector and orbit normal, respectively. Define f,w and @ and I as the orbital
true anomaly, argument of pericenter, node and inclination, respectively. ldentify v=-+ /2,
B=-1and a=-f-7/2.

The final spherical coordinates {—6, 3}:{ , O}. The Ynk(:(s,??;) function is [Abramowitz and

LR

Stegun, 1965)]

Ynk(g,ﬂ) _ \/2n-+1 \/_n—k)'(n+757' os(n - k)~

162)
—k_ (
()
and vanishes if n—kis odd. Define 2p =n—#k and let p range from O to n.The values for n = 2
are:
Yzo(%»(’) — _J 457r
Y1 (35,0) = 0
2(3,0) _ (163)
) 5
29(% ,0) = . 1
Yy-2(3 ,0)= g\/é%'
The standard inclination function Frnmp(7) is related to the above by
T Ti
Fasp(1) = (=1 NugYue2o( 5, 0)d5ioap (- 1), (164)
and is similar to the development of Allan[1967). Note that
Fo—p(I) = (- 1)"”(/ n,p(l )- (165)
The expansion of the spherical function is therefore
Yo (0, &)= "‘Z N (B)Frp( 12U 4wyt j(@-8)-mo) (166)

j=~n
If we include the expansion of the true anomaly in terms of the mean anomaly (142) and subtract
a phase lag 6(¥), the final expansion for the gravity coefficients is

M' R\’ < Num (n—m)!
Cl,, = 1" "ky— ( ) (2~ bmo) T X
mE MG SNy T (e m)! (167)

I”njzﬂ(])d_;'lm(‘)anq(e)c“1 Wnmpsa- 6"""”"(“’)],
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Varmpiq = (7 = 2p)(€+ w) + g€ 4 §( = ¢) - m(As — ¢).

The tidal disturbing function is obtained by substituting the above into the spin orbit function
R after expanding the potential in the same manner. The expansion of the {nm}components of

the potential is
I pn ;
Il;m = GM M—'—’EL—'R, 7 (Y'nmN }'ﬂm(O’ q)) (168)
a

where R =’real part’. The fina result is .
GM M'R*1 , [“ff
R = = gt 22 Y2 - bu\ TG 7
P3q pJq

169
5D Fip(1)G oz 5 (6) Glapg (€)X (169)

dz (g (OF

am

cos[Vnmpjq * er@a + bnripzg (V)]
where the overbar denotes tile tide raising body. 7he tidal equations for obliquity and spin are

obtained from partials of the unbarred variables

Ciw 2= 6—1(5”

di 06 (170)
Cw si d. . .08 R 4 cos (-a I
fwsince = gy a Tt

If the tide raising body and the body affecting the disturbing body are the same, then the terms

contributing to the secular rates have p = p,j =3 and q = §. The {nmpjq} term in the obliquity

rate is
Cwsin (31 nmpjo= (m cos ¢ - )T nmpig sin Snmpsg | (171)
with
Thmpje= GM,:ﬁilen Ez ; ;%l( = bmo) it (D)5 (). (172)

The special case where ¢ =7 = O, have 71— 2p = m and g = O. The coefficients in eq.(67) can be
derived from the above expression using table 8 and F220 = 3 and F201= 1/2. The range over the
indices is: O < m<nand ~n<j3<n

The {nmpjq} component of the tidal spin rate change is
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(a73)

C —~Wnmpj0 = mfl'nmqu sin 6nmqu

dt

For completeness, the tidal changes in the orbit {a, e, I} are given by [Plummer, 1960]

na d

’Q_Eian'mﬂjq -—('n —2p+ Q)Tnmqu sin 6n'mquv

na?e d

na’ed (174)
1_e2dt "M

1
- _ ((n -- 2p)(1'\/i—»=e'z) + q>Tnmqusin5nmqu’

nasin 1v/1 ——5557 Tnmpjq = ~(cosI(n - 2p)" 5)Tnmpig sin Gnmpig-

6]
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Table 1: ° :nusian Rotat | m Vector ‘
Source Type __ ]
Shapiro et al<, (1993) | radar p= 243.02? % 0.002

Davies et al. (1992)

Magellan SAR

g = 272.74+ 0.02
80=67.17}: 0.02

P =243.0185 % 0.0001
o = 272.763 0.02
b0=67.164 0.01

P = 243.01813:0.0005

Konoplivet a., (1993)

gravity field

Peri fm'_daVS), deciination « _and right ascenson ao(in degrees) of \ enus.

|Lble 2: Venu s’ Orbital Variation
i Sa(1)/2 8 i
x108 fyr~! deg.
1 671554 -5.61755 348.703
2 -404451 -7.07963 273.772
3 954443 -18.85115  60.426
4 575863 -17.74818 123.278
5 1377171 0.0 107.587
6 5577 -26.33073 127.291
7 99208 -3.00557 140.330
8 65885  -0.69189 23.961
j S2j ((‘) g; 0]'((3)
x10% Myl deg.
1 666756 5.59644 110.346
2 -20'73299 7.45592 20.243
3 1167087  17.36469 123.952
4 1346367 17.91550 335.249
5 1963619 4.24882 30.672
6 -40659  28.22069 128.112
7 54130 3.08552 121.363
8 1088 0.66708 73.977

Table 2: Venusian Orbital variations in both eccentricity (#Z=3_ S, (c)c™**"fJ) and
inclination (P = Sy;(I)e” {(3+%5)) from Tables V-VIII of Laskar [1990].
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Table 3:Prograde Frequency Terims in Venusian Obliquity

m o n oo j i 1 frequency phase  Tninojki # €.
. My deg.  »10-® deg.

1 1 5 1 1 1 1 15.463 332.315 2583 1 4°15
2 1 1 1 1 1 1 16.810 51.989 8122 1 6.08
3 1 5 2 1 1 1 16.925 47.246 2556 1 413
4 1 1 2 1 1 1 18.273  126.920 7596 1 594
5 1 2 1 1 1 1 18.67(1 321.886 3088 1 440
6 1 2 21 1 1 20.132 36.817 2678 1 420
7 1 1 3 1 1 1 30.044  160.266 1465 1 344

8 4 5 3 1 1 1 41.016  304.866 2256 48 3.97
9 1 4 3 1 1 1 42.363 31.518 1266 26 3.27
10 2 3 3 1 1 2 43.121 50.480 848 18 2.86
11 2 3 31 3 1 43390 313.684 1387 18 3.37
12 2 4 4 1 6 ] 43400 144.957 288 7 200
13 2 4 3 6 1 1 43591  118.077 328 13 2.09
14 2 3 31 1 ] 43.672 262.425 250 17 191
15 2 4 3 3 1 1 43.702 84.268 576 20 252
16 2 4 3 4 1 1 43.822  279.957 381 15 219
17 2 4 3 1 2 1 43.938 338.505 869 8 289
18 2 3 3 1 8 1 43.943  173.989 404 5 224
19 2 4 3 2 5 1 44.003 200.580 35 2 099
20 2 3 3 1 6 3 44.016 30.362 21 8 084
21 2 4 3 1 7 1 44.030 188.277 330 1 209
22 2 4 3 1 1 7 44.069 304.015 84 4 132
23 2 4 3 4 1 4 44.102 19.437 56 3 116
24 2 4 3 2 1 1 44108 122.856 437 8 230
25 2 4 3 1 5 1 44118 198.381 437 1 230
26 3 4 2 5 1 2 44179 200.564 445 4 231
27 2 4 3 1 1 8 44,151 324.396 113 17 1.46
28 2 4 3 2 8 1 44208 192.253 23 1 087
29 2 4 3 1 1 1 44.223 114.539 2966 12 4.34
30 2 4 3 3 3 1 44254  291.725 5 15 1.16
31 2 4 3 1 8 1 44.323 183.902 282 3 199
32 2 3 3 1 9 3 44.335 246.220 46 4 1.09
33 2 4 3 5 1 1 44.340 291.145 130 8 153
34 2 4 3 4 3 1 44,375  139.607 51 8 112
35 2 4 3 2 1 4 44.387 221.358 66 2 123
36 2 4 3 1 10 1 44393  135.987 162 1 165
37 2 4 3 1 5 4 44.398 312.908 40 1 104
38 2 3 3 1 1 3 44410 188.777 29 2 093
39 2 4 3 1 1 10 44,437  121.598 77 3 129
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Table 3. Prograde Freapency, Terms (cont.) _

m n o ; k 1frequency phase Imnejkt # o €
Yyr—? deg. _ x107%  deg..

4 0 2 4 3 1 2 3 44.489 188.874 122 8 150
4 1 2 3 3 1 8 3 44.494 24.968 40 2 104
42 2 4 3 1 1 4 44,502 213.753 787 2 279
4 324 3 1 7 3 44.581 41.199 66 3 122
4 2 4 3 1 8 4 44.603 313.655 28 4 0.93
4 5 2 4 3 5 1 4 44.619 25.492 38 5 102
4 6 24 3 2 3 1 44.660 334.363 50 5 112
4 7 2 4 3 1 5 3 44.669 47.545 84 3 133
48 2 4 3 1 3 1 44.775 327.003 582 8 253
4 9 2 4 3 1 6 4 44,782 310.677 34 2 098
50 2 3 3 3 5 1 44,805 329.770 47 7 1.09
51 2 4 3 1 8 3 44.874 35.937 54 2 114
52 2 4 3 5 3 1 44,892 136.813 50 7 112
53 2 3 3 4 5 1 44,925 158.475 33 4 097
54 2 4 3 1 10 3 44,944 347.277 3l 2 095
55 2 4 3 1 3 4 45.055 24.462 50 4 112
56 2 3 3 2 5 1 45.211 7.143 39 4 1.03
57 2 3 3 1 5 1 45.326 359.336 443 5 231
568 2 3 3 1 5 4 45.605 114.091 34 1 098
59 23 3 1 5 3 45.877 210.878 72 2 126
6 03 4 4 1 1 1 53.028 325.765 1081 84 3.10
6 1 3 4 3 1 1 2 53.580 182.894 1826 66 3.70
6 234 3 3 1 1 53.849 104.727 1028 54 3.05
6 3 3 4 3 1 11 54.131 41.941 27153 71 424
6 434 3 1 1 4 54.411 138.366 1023 25 3.05
6 5 4 4 3 1 1 1 54.682 247.735 1964 51 379

Table 3: Prograde frequency orbital variations (see Eq. (7) and appendix B). The identification
number {mnojkl} of the largest term of a total number # contributing to a given amplitude
(eq. 133) is given. A critica excitation obliquity ¢.{eq. 88) for each term is indicated. Terms
29, 42, 48 and 57 have been identified with the following combinations of the eigenfrequencies

Lpaasiny - g2+ ga— s3,

V21114 = 921 g4 s34 8y,
S¥2a3a1 = 924 204-93- 83,
Ji¥233151= 92+ 94 + s4 253,

Laskar [1990] found that he had to introduc e new frequencies 6 fi= 0.28" yr~? and
6f2= 012" yr~! to aid this identification. Also 26 fi=g3— gs.
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Table 4: Atmos] 1eric Pre: jure Amplit  des

Source | $P(2n—w) | 6P(-w) | 6P(2n=2w) | 6P(2n)
DV 1.3 18 0.61 15
DVI | 14 31 0.79 12
DVII |20 4.0 1.2 18

D VIl |39 12 2.2 5.5

Pl 1 (130

Pl 2 16

sz 0.7

Table 4: Pressure amplitudes (in mbar) for 4 thermal tide constituents derived from models
constructed by Dobrovolskis [1978] (see DV-DVIII). Pechmann and Ingersoll [1984] ( see PIl
and P12 ), and Shen and Zhang [1989,1990] obtained estimates for the semi-diurnal tide. Only
models in which bottom heating is significant are included here. The I’ VII1, P12 and S7 models
assume heating close the ground. Models D VII (and PI1), D VI and DD V limit heating to a
thermal skin depth of ~1.1km,~ 3.5km and ~ 20 kni, respectively. The Dobrovolskis’ models
(values quoted are average of submodels C and ID obtained using method 1 for the equivalent
depth: See pages 68-71 of thesis) assume an integrated column heat flux of 100W m™2. 7o
achieve the appropriate scaling, the diurnal and zonal tidal amplitudes of Dobrovolskis models
have been multiplied by 2/3 and 3/4, respectively.
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Table .5. Nominal Venusian Structure Profile .

Crust: Thickness=20km
P 2.25gcm™ ¥
K 0.564Mbax
7 0.358Mbar

Upper mantle: P, < 0.14Mbar

P (3.2979 + 1.9247P, -- 0.79409FP3)F,
K (1.1694 + 3.8885 P+ 2.209F2)Fk
p (0.55031 + 1.7642 P+ 1.0441 P2 F,
0.141Mbar < P, < 0.239Mbar
P (3.2617 + 3.8224P, - 1.7296 P3)F,
K (1.6813+ 3.4164P, - 0.31619P2)Fg
i (0.6237 + 2.256971;+ 1.0403 PP?)F,
Lower mantle: P, > 0.239Mbar
P (4.0370 + 1.4995P, - 0.3233P; +0.0304P3)F,
K (2.2571 + 3.2436P, +40.2726 2 - 0.2283 P3)Fk
p (1.2793 + 1.6682P. - 0.4046F% + 0.0542 P3)F,
Core
P 7.2952 4 2.4174P, — 0.4106 P 4 0.0375°3 4 6p
K 2.6737 + 1.5670P, +1.1227P2-0.2020P3
# 0.4390 -+ 0.2186P, + (.0318 P?

# This extrapolation from Earth’s solid inner core is used to determine rigidity of hypo-
thetical Venusian solid core. If Venus mantle has the same composition as Earth's then the
Venusian iron core must contribute about 4% less to the total mass as compared to Earth’s core

[Ring wood and Anderson, 1977].
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%

94
94
9
94
94
94
89
89
189
89
89
89
84
84
84
84
84
84

89*
84
84*

fFo(Mg Re N /]

(km) g cm-’

Table 6: Venusian st
i

3000 11.806
3100 11’201
3200  10.665
3300 10.189
3400 9.763
3500 9.380
2900 11.782
3000 11.173
3100 10.636
3200 10.161
3300 9.737
3400 9.358
2800 11.681
2900 11.076
3000 10.545
3100 10.076
3200 9.660
3300 9.289
3000 11.173
2800 11.681
2900 11.076

0.33089
0.33181
0.33274
0.33371
0.33471
0.33573
0.33499
0.33577
0.33657
0.33739
0.33825
0.33913
0.33927
0.33992
0.34060
0.34130
0.34203
0.34276

0.33577
0.33927
0.33992

The (*) members have solid iron cores, but are otherwise identical to their fluid counter-
parts.1The equivalent Love numbers (see equation 42) due to core tidal potential () and core

rotational potential (E) for this model are: 5= ().502 and = 0.117.
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tructure and Love numbers
Co/MR* ___bp. ___  ha, 2 k,

— _9cm”

0.02657  1.065 0.4496 0.0750 0.2256
0.02968 0561  0.4763 0.0766 0.2398
0.03309 0.120 0.5064 0.0784 0.2556
0.03684 -0.265 0.5390 0.0809 0.2729
0.04091 -0.605 0,5742 0.0839 0.2915
0.04544  -0.904 0.6115 0.0873 0.3116
0.0224? 1.034  0.4393 00769 0.2216
0.02517 0523  0.4649 0.0781 0.2353
0.02821 0.078 04931 0.0796 0.2503
0.03155 -0.310 0.5239 0.0814 0.2667
0.03524 -0.650 0.5566 0.0839 0.2842
0.0392$ -1.213 0.6301 0.0869 0.3034
0.01868 0.940 04310 0.0790 0.2184
0.02100  0.428  0.4555 0.0798 0.2320
0.0237°( -0.016 04814 0.0811 0.2459
0.02674 -0.401  0.5103 0.0824 0.2614
0.03003 -0.738 0.5416 0.0847 0.2785
0.03365 -1.033 0.5745 0.0870 0.2963
0.0251'/ 0523 ().3410 0.0818 0.1704
0.01868 0.940  ().3300 0.0814 0.1674
0.02109 0428 0.3397 0.0796 0.1711




Table 7: Coefficients Ci; )

i i o . _Cu G Gy
1 2 0535161 0999175 .0.181914  -0.848870
1 3 0387098 0257424 0016035  -0.130126
1 4 0254058 0075304 -0.000401  -0.012402
1 5 0074394 0005041 -0.000246  0.004115
1 6 0040589 0001477 -0.000076  0.002452
9 3 0723331 9308230 3914970  12.047100

24 0.474732 0564162  0.071555  -0.400567

2 5 0139012 0.018625 -0.000723 0.004964
2 6 0.075844 0.005244 -0.000255 0.004173
3 4 0.656314 3746720 1.210460  -4.245600
3 5 0192184 0.038306 -0.000995 0.001306
3 6 0.104854 0.010240 -0.000459 0.005017
4 5 0.292823 0.109762 0.001201  -0.029789
4 6 0.159762 0.025239 -0.000867 0.004162
5 6 0545593 1107610 0.213283  -0.967739

Table 8: Obliguity functior: (n = 2)

Jj m dz,,,
2 2 cl
1 2¢3s,
0 —6c2s?
-1 —2¢983
-2 s4
1 1 - 3cks?
0 \/661(‘282
-1 83— 3c2sk
0 0 1-6c%s?
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Figure Captions

1: Components of Venusian obliquity. The total obliquity (free plus forced) relative to the
orbit is 2.6°.

2: Nominal profile of density p (g cm-3), compressibility X (Mbar)and rigidity # (Mbar)
as afunction of pressure for an earth-like model..

3: Love number k; versus moment of inertia with lines joining models with common mantle
molar fraction fy,={(Mg/(Fe+ Mg)).

4: Love number K,versus core moment.

5: Love number k5 versus core density difference ép.. The apparent clustering of models with
100km difference in core radii is coincidental.

6: Spectral amplitudes of prograde frequency terms in orbit inclination for a limited frequency
range: 41" yr~}to 53" yr~". Light grey band corresponds to predicted range in {6) while narrow
dark bands indicate resonance widths of major lines within band.

7. Forced component of Venusian obliquity as a function of the precession frequency, o
derived from a linear response model. The free obliquity is the difference between the observed
location and some point on the curve. Fig. 7a plots p,versus Py, with location of prominent
resonances indicated, Origin is the invariable planc norma. Fig 7b plots amplitudes of both
free obliquity and obliquity relative to invariable plane normal.

8: Mantle response (p = pr — ip:) @S a function of core ¢, for unit forcing with frequency
s = —18.85" yr~!.Herea = 0.15 and 6,=- 45.5" yr ~!.Curves for K, (= Kc(s— 00)/as?) fixed
a 1.5, 0.75, 0.5 and 0.25 are shown.

9: The forced obliquity as a function of CMB, retrograde FCN o, for a choice of parameters
which result in the curve passing through the observed pole ato.== —18.5" yr~!. Note that
the moment of inertia ratio is large (a=: 0.15) and CMB friction parameter K. =6 x 107
is exceptionally small. The orbit normal and the predicted position of the forced obliquity for
CC = 29¢, (b) is also shown relative to the invariable plane normal at (0,0). Line c-b is the free
component vector.

10. Venusian obliquity damping rate resulting from toroidal shear caused by either free pre-
cession or spheroidal tidal deformation of a uniformly viscous core. The dashed lines correspond
to Vanyo's [1991: eq. (13) and figure 7] result for the onset of turbulence assuming €= 2.1°,
and are to be compared with the model calculation shown for two values of 00/0c. The Stokes
limit applies when v/wR?>>1andthe equivalent core Kc = 352/ R2.

11: Earth’s obliquity decay (or growth) rate caused by a viscous fluid core.
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12: Tidal histories of obliquity e(t)as a function of both time 7'/Tp (a) and spin w(7')/w(now)
(b). The atmospheric, thermal, semi-annual tide dominates near 90° and allows evolution from
prograde to retrograde orientation. The time scae Toz1/Kis (now)~ 5 X 10'yr. The mantle
nonhydrostatic e, is set equal to 3e,(now) until T = 70T,, after which e, = e,w(T)/w(now).
This choice tends to speed up the onset of core friction. Here the separatrix starts at a prograde
obliquity of ~ 45° (retrograde obliquity of 135°) and «'(0)/w(now) = 30.

13: Tida history of the FMN frequency =~ o, cose. for a few of the curves in Figure 8 which
begin with prograde orientation.

14: Tida histories of obliquity for the case where the semi-diurna tides are omitted. The
maximum starting obliquity at T=0 and w(0)/w(now) = 30 on the separatrix is ~ 28°. Only
the onset of core friction preserves a potential retrograde end state.

15: Temporal history of obliquity with linearly increasing J2(dInJz2/dt = 5 x 1011 yr=1)
and initiad p,= 0.002, p,= 0.000 and oe(J2) = 438" yr~!. Tidal Kia = 2.4 X 10-s yr~}, and
from core friction, the equilibrium sin €o=0.024. Plots b, ¢ and d show {p,, py } history during
passage through resonances associated with arguments ¥24311,(170myr <t <310myr), @243114

(320myr <1< 400myr), and Yz243131(420myr <1 <500myr), respectively. For each case, pr
and p, are shown relative to rotating frame of each argument such that phase relative to the

present is preserved. Observed pole location pole (diamond) is indicated, and origin is predicted
pole position (see eq. 9)due to non-resonant, retrograde terms.

16: Obliquity history with positive rate dlnJ2/dt=5 x 101" yr=? and sin €0 = 0.012.
Panel b displays the {ps, py} history for %243111(171myr <t < 290myr) while panel b shows
Y2431 14 (325myr <1< 351myr). These {p., py} panels in this and other figures cover only the
interesting time interval of the pertinent variable. A

17: Obliquity history with positive rate dlnJ,/dt =5 x 10" yr’'and sin €0 = 0.08. Panel
b shows the {p,, py } history covering 140myr <7'<240myrin the rotating frame of the ¥243111
angle variable.

18: Obliquity history with negative dlnJz2/dt=.-5x 10" yr~! sin €0 = 0.024 and p, =
0.002, py(0) = 0.000. Venus first encounters the arguinent ¥243131(panel d).

19: Obliquity history with dlnJy/dt= 4 x 10”yr-! and sin o= 0.024 and initial 00(J2) =
435" yr71,

20: Obliquity history with dln J2/dt = - 4x 10°yr~!, sin €0 = 0.024, initia 0o(J2) = 47.8"
yr~land p,(0) = 0.024.

21: Frequency histories of four arguments (0243111, 234114, V243131, %233151} which cover
the past 150myr (from figures 8 and 9 in [l.askar,1990}).
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22. Obliquity history from — 150myr to present due to tempora change in ¥234151,with a)
final oo(1= 0) = 45.23” yr~!, b) 6o(t= 0) = 45.25" yr~! and c)o.(t== O) = 45.27" yr~}.
Tidal Kia = —1 x 10°yr~1, the rate dInJ2/dt =1 x 10-12yr~!. Only the end stage of the {p.,

Py} historyisshown,and again the {ps, py} panels are in the rotating frame of 234151 angle
so that phase of excitation relative to observed pole position at present time can be compared

with the numerical integration.

23. Obliquity history due to 234131 with fins] @) oo(t = O) = 44.720" yr~},0,(t = O) =
44.728" yr~lando,(t= O) = 44.732" yr~!.

24. History for the %234111 argument with a) finalg,(t== O) = 44.3555” yr'! and b)
o.(t = O) = 44.3600" yr—}.

25: Obliquity history from —150myr to present due to temporal change in ¥234114 . TWO

values for the find o,(t = O) are shown which delineate the upper hound on o,(0): @) o,(0) =
44.555" and b) 0,(0) = 44.580 "yr=!.

26: Obliquity history from — 150myr to present ducto temporal change in 234114 . This
integration is identical to figure 25 except that the K,, damping rate is changed in each panel .

27. Profiles of the scaling factors F,, Fx and F for fro = 0.94 and 0.84.
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Venusian k,versus core density difference
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